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Abstract

We confirm by the multi-Gaussian support vector machine (SVM) classification
that the intrinsic dimension of Riemannian manifolds improves the efficiency (learning
rates) of learning algorithms. The essential analysis lies in the study of approximation
in Lp (1 ≤ p < ∞) of Lp functions by their convolutions with the Gaussian kernel with
variance σ → 0. This covers the SVM case when the approximated function is the Bayes
rule and is not continuous in general. The approximation error is estimated by imposing
some regularity conditions on the approximated function to lie in some interpolation
spaces. Then the learning rates for multi-Gaussian regularized classifiers with general
classification loss functions are derived, and the rates depend on the intrinsic dimension
of the Riemannian manifold, not the dimension of the underlying Euclidean space. Here
the input space is assumed to be connected compact C1 Riemannian submanifold
of IRn which is isometrically embedded. The uniform normal neighborhoods of the
Riemannian manifold and the radial basis form of Gaussian kernels play an important
role.
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1 Introduction and Multi-Gaussian SVM

Manifold learning has become a hot topic in machine learning recently. It appears naturally

from the observation or belief that high-dimensional data or functions arising from physical

or biological systems can be effectively modeled or analyzed as being concentrated on a

low-dimensional manifold. There have been many tasks for manifold learning demanded by

many applications such as dimensionality reduction [4], feature selection [6, 17, 18], semi-

supervised learning [3], and learning topological statistics [14]. Compared with vast practical

observations and empirical testing, rigorous mathematical analysis in the topic of manifold

learning is rather limited [2, 17, 14, 15, 18].

In [25] we consider the approximation of continuous functions on Riemannian manifolds

by functions from reproducing kernel Hilbert spaces associated with Gaussian kernels. The

obtained order of approximation is applied to the multi-kernel least-square regularization

scheme generated by Gaussians with flexible variances. The derived learning rate is better

than that in the setting of Euclidean space domains, which confirms the belief that the low

dimensionality of manifolds improves the efficiency of learning algorithms.

Many problems in machine learning are about classification where an essential mathe-

matical problem is the approximation of functions in spaces like Lp(X), not in C(X). So in

this paper we study the approximation in Lp(X) by reproducing kernel Hilbert spaces as-

sociated with Gaussian kernels Kσ with variances σ → 0. Then we apply the approximation

order to get learning rates of multi-Gaussian regularized classifiers with general classi-

fication loss functions. The obtained learning rates depend on the intrinsic dimension of

the Riemannian manifold, not the dimension of the underlying Euclidean space.

Let us mention the setting of binary classification and the special example of support

vector machines.

1.1 Binary classification

Two classes dealt with by binary classification learning algorithms can be represented by

Y = {1,−1}. The events for which the prediction of classes is desired are points from a
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metric space X (called the input space, maybe a subset of IRn). A model used in learning

theory is to assume a probability measure ρ on Z := X×Y , then the conditional distribution

of ρ at x ∈ X is a probability distribution ρ(·|x) on Y . For y = 1 or −1 in Y , P (y|x) stands

for the probability for x to belong to the class y. The marginal distribution ρX of ρ on X

measures how the events are distributed in X.

A binary classifier is a function C from X to Y . It gives a prediction of class C(x) ∈ Y

for each event x ∈ X. The misclassification error for the classifier C is defined as the

probability of wrong prediction

R(f) := Prob{C(x) 6= y} =

Z

X

P (y 6= C(x)|x)dρX . (1.1)

By discussing for each event x ∈ X, we can easily see that a best classifier minimizing

the misclassification error, called the Bayes rule (e.g. [11]), can be expressed as

fc(x) =

(
1, if P (y = 1|x) ≥ P (y = −1|x),
−1, if P (y = 1|x) < P (y = −1|x).

(1.2)

The purpose of classification algorithms is to find good classifier approximations Cz of

the Bayes rule from the random sample z = {(xi, yi)}m
i=1 drawn according to the probability

measure ρ. We hope that the approximating classifier Cz will approach the Bayes rule when

the number of samples increases, in the sense that the excess misclassification error

R(Cz) − R(fc) tends to zero with confidence as m → ∞.

Most practical algorithms can be expressed mathematically as minimizers of some func-

tionals over some spaces of continuous functions. A binary classifier can be derived from a

continuous function f : X → IR as sgn(f) : X → Y given by sgn(f)(x) = 1 if f(x) ≥ 0 and

−1 otherwise. To measure how well sgn(f) can be used for binary classification, we often use

a loss function φ : IR → IR+ and the value φ(yf(x)) as the local error incurred in predicting

y from f(x). Define the generalization error of f with respect to the loss function φ as

Eφ(f) =

Z

Z

φ(yf(x))dρ (1.3)

and the empirical error with respect to the loss function φ as

Ez
φ(f) =

mX

i=1

φ(yif(xi)). (1.4)

Many learning algorithms for classification involve this empirical error. Their error analysis

(for the misclassification error) can be done by estimating the excess generalization error
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Eφ(f) − Eφ(f
φ
ρ ) where fφ

ρ is the target function defined by

fφ
ρ = arg min

�
Eφ(f) : f is a measurable function from X to IR

	
. (1.5)

1.2 Support vector machines

Support vector machines form an important class of classification algorithms. As a special

kernel method, they can be expressed in reproducing kernel Hilbert spaces associated with

Mercer kernels.

We say that K : X × X 7→ IR is a Mercer kernel if it is continuous, symmetric and

positive semidefinite.

The Reproducing kernel Hilbert space (RKHS) HK associated with the kernel K is

defined [1] to be the completion of the linear span of the set of functions {Kx := K(x, ·)}x2X

with the inner product 〈·, ·〉K given by 〈Kx, Ky〉K = K(x, y).

For example, the Gaussian kernel with variance σ ∈ (0,∞) defined by

Kσ(x, y) = exp

�
−‖x− y‖2

2σ2

�
, x, y ∈ X ⊂ IRn (1.6)

is a Mercer kernel (e. g. [9]).

The important role played by Mercer kernels in kernel methods can be seen from the

regularization scheme for classification problem associated with the RKHS HK and φ:

fz,λ,K = arg min
f2H K

(
1

m

mX

i=1

φ
�
yif(xi)

�
+ λ‖f‖2

K

)

, (1.7)

where λ > 0 is a constant called the regularization parameter. The classifier is given by

the sign function sgn(fz,λ,K). The reproducing property of HK :

〈Kx, f〉K = f(x) ∀x ∈ X, f ∈ HK (1.8)

together with the orthogonal projection in the Hilbert space HK tells us that the minimizer

in (1.7) has the form fz,λ,K =
P m

i=1 c
z
iKxi

. The coefficients (cz
i )

m
i=1 can be computed by solving

an optimization problem which is convex when the loss function φ is admissible.

Definition 1. We say that φ : IR 7→ IR+ is an admissible loss function if it is convex

and differentiable at 0 with φ0(0) < 0.
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A special setting is given by the hinge loss φ(x) = (1 − x)+ := max{0, 1 − x}. The

algorithm (1.7) with this special loss function φ is the support vector machine in the reg-

ularization form [13]. Its special form ensures that the convex optimization problem for

finding (cz
i )

m
i=1 in fz,λ,K is actually a convex quadratic programming one and many efficient

interior point methods are available from optimization theory.

The minimizer fφ
ρ for φ being the hinge loss is exactly the Bayes rule fc. For the error

analysis in this special case, Zhang [27] showed that R(sgn(f)) − R(fc) ≤ Eφ(f) − Eφ(fc)

which in turn [8] can be bounded by ‖f−fc‖L1
ρX

. Thus to estimate the excess misclassification

error R(sgn(fz,λ,K)) − R(fc) for the efficiency of the SVM algorithm, we need to consider

‖fz,λ,K −fc‖L1
ρX

, the approximation of the generally discontinuous function fc in the function

space L1
ρX

, not in the space C(X) of all continuous functions on X. So the result from [25]

cannot be used for SVM in the manifold setting. This is one motivation of our study in this

paper.

1.3 Multi-kernel regularized classifiers

It was shown in [8, 19] that when fρ lies in the Sobolev space Hs(X) with s > 0 and X is a

domain of Euclidean space with nonempty interior, the learning rate of the algorithm (1.7)

with a fixed Gaussian kernel and the least square loss φ(t) = (1 − t)2 is only O((logm)� s/2).

If we allow flexible variances of Gaussian kernels, things are totally different and getting

polynomial decay for the learning rate is possible [26, 25]. This confirms the usefulness of

flexible variances in applying Gaussian kernels in practice.

In this paper we consider the multi-kernel regularized classifier sgn(fz,λ) generated by

the regularization scheme associated with the general loss function φ and Gaussians (1.6)

with flexible variances {Kσ : 0 < σ < ∞} defined as

fz,λ = arg min
σ2 (0,+1 )

min
f2H Kσ

(
1

m

mX

i=1

φ (yif(xi)) + λ‖f‖2
Kσ

)

. (1.9)

Though multi-kernel algorithms for regression and classification have been applied ex-

tensively, their error analysis is well understood only if the input space X is a domain of IRn

with nonempty interior and the learning rate is not as fast as expected when the dimension

n of the Euclidean space is large. It was pointed out in [26] that when the input space X is a

low-dimensional manifold embedded in the large-dimensional Euclidean space, the learning

rates may be greatly improved. In such a manifold setting the Fourier transform technique

in [26] can no longer be used and other methods are required.
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We took a step toward this problem in [25], where we obtained satisfactory learning rates

for the multi-kernel regression algorithm with the least square loss by means of uniformly

normal neighborhoods in Riemannian manifolds. But the involved approximation scheme

there cannot be directly used for the classification setting as mentioned in §1.2. The mini-

mizing function fφ
ρ associated with the loss function φ in the classification problem is often

discontinuous and we need to consider the approximation problem in the space Lp(X), not

in C(X).

2 Main Results on Riemannian Manifolds

In what follows we assume that X is a connected compact C1 submanifold of IRn without

boundary which is isometrically embedded and of dimension d. Under this assumption, X

is a metric space with a metric dX and the inclusion map Φ : (X, dX) ↪→ (IRn, ‖ · ‖) is well

defined and continuous (actually it is C1 ). Here ‖ · ‖ is the norm in IRn. Our assumption

that the embedding map Φ is the inclusion map is essential. For a general embedding map

(which always exits according to the Nash Embedding Theorem), we still do not know how

to establish similar results.

For 1 ≤ p < ∞, the space Lp(X) on X consists of all measurable functions on X with the

norm ‖f‖Lp(X) =
� R

X
|f(x)|pdV (x)

	 1
p finite, where V is the Riemannian volume measure of

X.

To measure the regularity of functions on X, we need Sobolev spaces on the Riemannian

manifold X. For an integer k and f ∈ C1 (X), ∇kf denotes the kth covariant derivative of f

(with the convention ∇0f = f). As an example, the components of ∇f in local coordinates

are given by (∇f)i = ∂if, while the components of ∇2f in local coordinates are given by

(∇2f)ij = ∂ijf −
P d

`=1 Γ`
ij∂`f where Γ`

ij is Christoffel symbols of ∇ with respcet to {∂i}d
i=1,

see [16] for more details.

Definition 2. Let p ≥ 1 and k ∈ IN. The Sobolev space Hp
k(X) is the completion of C1 (X)

with respect to the norm

‖f‖Hp
k (X) =

kX

j=0

� Z

X

|∇jf |pdV
� 1/p

.

Recall that the Bayes rule fc is discontinuous in general. Its regularity may not be

satisfactorily characterized by Sobolev spaces Hp
k(X) with integer indices k. To get suitable
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characterizations, we need interpolation spaces [5] from which one can define Sobolev spaces

of arbitrary indices [12].

Definition 3. Let 0 < θ ≤ 1. The interpolation space (Lp(X), Hp
2 (X))θ between Lp(X) and

Hp
2 (X) consists of all functions f ∈ Lp(X) such that the norm

‖f‖θ := sup
t>0

K(f, t)

tθ
(2.1)

is finite. Here K(f, t) is the K-functional of the pair (Lp(X), Hp
2 (X)) defined by

K(f, t) = inf
g2Hp

2 (X)

�
‖f − g‖Lp(X) + t‖g‖Hp

2 (X)
	
, t > 0. (2.2)

The interpolation space (Lp(X), Hp
2 (X))θ is a Banach space between Lp(X) (with θ = 0)

and Hp
2 (X) (with θ = 1). It can be easily seen that the function K(f, t) of t is continuous,

non-decreasing and bounded by ‖f‖Lp(X) (take g = 0 in (2.2)). Since Hp
2 (X) is dense

in Lp(X), K(f, t) tends to zero as t → 0. The requirement that the function f lies in

(Lp(X), Hp
2 (X))θ is equivalent to the decay condition K(f, t) = O(tθ).

Example 1. Let X = S1 = {eiu : u ∈ IR} ⊂ IR2, p = 2 and 0 < a < b < 1. Define a

function f ∈ L2(X) by f(eiu) = 1 for a ≤ u ≤ b and zero for u ∈ [0, 2π]\[a, b]. Then f is

not in H2
1 (X) since f ∈ H2

1 (X) would imply f ∈ C(X). But for any 0 < θ ≤ 1
4 , we have

f ∈ (Lp(X), Hp
2 (X))θ. In fact, by choosing gt as

gt(e
iu) =

8
>>>>>>>><

>>>>>>>>:

1 if u ∈ [a, b],
2
t
(u− (a−

√
t))2 if u ∈ [a−

√
t, a−

p
t

2 ),

1 − 2
t
(u− a)2 if u ∈ [a−

p
t

2 , a),

1 − 2
t
(u− b)2 if u ∈ (b, b+

p
t

2 ],
2
t
(u− (b+

√
t))2 if u ∈ (b+

p
t

2 , b+
√
t],

0 if u ∈ [0, 2π)\[a−
√
t, b+

√
t],

we have ‖f − gt‖L2(X) + t‖gt‖Hp
2 (X) = O(t

1
4 ).

Using the regularity condition imposed by interpolation spaces, we can state our first

main result concerning the learning rates of the multi-kernel SVM with flexible Gaussians

on Riemannian manifolds.

Theorem 1. Let X be a connected compact C1 submanifold of IRn without boundary which is

isometrically embedded and of dimension d. Let fz,λ be defined by (1.9) and φ(x) = (1−x)+.
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If fc ∈ (L1(X), H1
2 (X))θ for some 0 < θ ≤ 1, then by taking λ =

�
log2 m

m

� 2θ+d
12θ+2d

, we have

Ez2Zm

�
R(sgn(fz,λ) − R(fc)

	
≤ eC

�
log2 m

m

� θ
6θ+d

, (2.3)

where eC is a constant independent of m.

Theorem 1 is exciting since the learning rate depends only on the intrinsic dimension d

of the Riemannian manifold X, not on its extrinsic dimension n. As d is very small and

much less than n in many practical problems, our learning rate is satisfactory and convincing

theoretical studies in manifold learning. This is another motivation of our investigation in

this paper.

Our second main result is about the approximation ability of Gaussians on Riemannian

manifolds. This theorem is of importance on its own in approximation theory and it is the

key step to prove Theorem 1.

When X has nonempty interior as a subset of IRn(d = n), the approximation of functions

from various function spaces by Gaussians is a classical topic in approximation theory [12]

and its application in error analysis has been well understood [19, 10, 22]. Things are

totally different when X is a Riemannian submanifold of IRn and little is known. In [25], we

considered the approximation ability of Gaussians on the space C(X). Here we consider the

approximation on the space Lp(X).

Let 1 ≤ p ≤ ∞. Define a family of linear operators {Iσ : Lp(X) → Lp(X)}σ>0 as

Iσ(f)(x) =
1

(
√

2πσ)
d

Z

X

Kσ(x, y)f(y)dV (y)

=
1

(
√

2πσ)
d

Z

X

exp

�
−‖x− y‖2

2σ2

�
f(y)dV (y), x ∈ X, (2.4)

where V is the Riemannian volume measure of X.

Note that a d-dimensional manifold is, roughly speaking, a topological space which is

locally Euclidean of dimension d. That’s why we use the scaling factor 1
(
p

2πσ)d .

Theorem 2. Let X be a connected compact C1 submanifold of IRn without boundary which

is isometrically embedded and of dimension d. Let p ≥ 1. Define Iσ : Lp(X) 7→ Lp(X) for

σ > 0 by (2.4). If f ∈ Hp
2 (X), then we have

‖Iσ(f) − f‖Lp(X) ≤ CX‖f‖Hp
2 (X)σ

2 ∀σ > 0, (2.5)
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where CX is a positive constant independent of f or σ.

The main difficulty in the proof of Theorem 2 (given in Section 3) lies in bounding the

integrals over uniformly normal neighborhoods of the convolutions with Gaussians. This is

different from the approximation in C(X) where only function values need to be bounded

[25].

Due to a saturation phenomenon in approximation theory, the order of approximation in

(2.5) cannot be further increased for functions in higher order Sobolev spaces.

The methods of deriving learning rates in this paper can be extended to other learning

algorithms on Riemannian manifolds such as online learning for classification [24] and other

Lp problems on Riemannian manifolds.

3 Lp Approximation on Manifolds by Gaussians

In this section we prove Theorem 2 after some preparation and illustration.

3.1 Some knowledge on Riemannian manifolds

We start with a brief introduction to normal coordinates and uniform normal neighborhoods

(see [14] and [25] in detail). These two basic concepts provide good coordinate systems on

Riemannian manifolds and make computations easier. Denote the tangent space at p ∈ X

as Tp (X).

Definition 4. For p ∈ X and v ∈ Tp (X), let γ(t,p, v), t > 0, be the geodesic satisfying

γ(0,p, v) = p and γ0(0,p, v) = v. The exponential map Ep : Tp (X) → X is defined by

Ep (v) = γ(1,p, v).

By [7], we know that for each p ∈ X, there exists a strongly convex neighborhood Up of

p, that is, for any two points q1,q2 in the closure Up of Up , there exists a unique minimizing

geodesic γ joining q1 and q2 whose interior is contained in Up . Denote Bδ(0) = {v ∈ Tq (X) :

|v| < δ} as the ball of Tq (X) centered at 0 with radius δ.

Definition 5. An open set U ⊂ X is called uniformly normal if there exists some δ > 0

such that U ⊆ Eq (Bδ(0)) for every q ∈ U .
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The following proposition (see [25]) tells us the existence of uniform normal neighbor-

hoods having some good properties.

Proposition 1. For every p ∈ X there exist neighborhoods Wp and W �
p and a number δp > 0

such that the following conditions hold:

(a) for every q ∈ W �
p , the map Eq : Bδp(0) ⊂ Tq (X) → X is a diffeomorphism on Bδp(0);

(b) W �
p is uniformly normal with respect to δp , that is, W �

p ⊆ Eq (Bδp(0)) for every q ∈ W �
p ;

(c) The closure of Wp is contained in W �
p and W �

p ⊆ Up .

Choose an orthonormal basis {e1, e2, · · · , ed} of Tp (X), then for each q ∈ Up , the set of

tangent vectors {eq
1 , e

q
2 , · · · , eq

d}, moved by parallel transport from p to q along the unique

minimizing geodesic, forms an orthonormal basis of Tq (X). In addition, this frame depends

smoothly on q. According to (a) of Proposition 1, the map φq from U = {u ∈ IRd : ‖u‖ <
δp } ⊂ IRd to X defined by φq (u1, · · · , ud) = Eq (

P d
i=1 u

ieq
i ) gives a system of coordinates

around q. We call such coordinates q-normal coordinates. Under these normal coordi-

nates,

dX

�
q, Eq (

dX

i=1

uieq
i )

�
= ‖u‖ ∀‖u‖ < δp , (3.1)

where dX is the Riemannian metric of X.

In addition, the Riemannian structure g of the isometrically embedded manifold X under

the q-normal coordinate (U, φq ) can be expressed as

gq
ij(u

1, · · · , ud) := 〈dΦq
� ∂

∂ui
(q)

�
, dΦq

� ∂

∂uj
(q)

�
〉IRn , i, j = 1, · · · , d. (3.2)

Here
�

∂
∂ui (q)

	 d

i=1 is a basis of Tq (X) [7, 25] and dΦq is a map from Tq (X) to TΦ(q )(IR
n)

induced by the inclusion map Φ.

For each q ∈ Wp and u ∈ U , gq
ij is well defined and is C1 as a function on Wp × U . It

satisfies gq
ij(0) = δij and furthermore, we have the following proposition.

Proposition 2. For p ∈ X, choose Wp and δp as in Proposition 1. For each q ∈ Wp ,

choose the q-normal coordinate (U, φq ) and the corresponding local representation gq
ij of the

Riemannian structure as above. Then the following two bounds hold with a constant Cp

independent of q ∈ Wp :

�
�
�
�

q
det(gq

ij)(u
1, · · · , ud) − 1

�
�
�
� ≤ Cp ‖u‖2 ∀‖u‖ ≤ δp , (3.3)

10



�
�
�
�
dX(q, x)

� 2 − ‖q − x‖2
�
�
� ≤ Cp

�
dX(q, x)

� 4 ∀x ∈ Eq (Bδp(0)). (3.4)

This proposition is a slight variation of Proposition 2.2 in [14] and it is easy to give a

self-contained proof as in [25]. So we omit the proof here.

In this paper, we have assumed that X is a Riemannian submanifold of IRn. For each pair

(x, y) of points on X, we have the distance dX(x, y) under the Riemannian metric and the

distance ‖x−y‖ under the Euclidean metric. The following lemma concerning a relationship

between these two metrics was proved in detail in [25].

Lemma 1. There exists a positive constant C0 ≥ 1 such that

dX(x, y) ≤ C0‖x− y‖ ∀x, y ∈ X. (3.5)

This lemma will be used frequently in the following since in learning processes we do not

see the Riemannian metric dX . We can only use the Euclidean norm ‖ · ‖. But in analysis,

we can assume the existence of dX and make good use of it.

3.2 An illustration of computing integrals on manifolds

In order to get some ideas of using q-normal coordinates system to compute some integrals

on the Riemannian manifold X, we prove the following lemma.

Lemma 2. For the Gaussian kernel Kσ defined by (1.6), we have

Z

X

Kσ(q, y)dV (y) ≤ eCXσ
d ∀q ∈ X, σ > 0, (3.6)

where eCX is a constant independent of σ or q.

Proof. Let Wp , δp and Cp as in Proposition 1 and Proposition 2. Denote W 0
p := Wp ∩

Ep (Bδp/2(0)). Since X ⊆ ∪p2XW
0
p and X is compact, there exists a finite subset P of X

such that X ⊆ ∪p2P W
0
p .

Let δ� = minp2P min
� 1√

2Cp
, δp

	
> 0. Let the constant C0 as in (3.5). Let q ∈ X. It

belongs to some W 0
p with p ∈ P . Choose B q

σ := {x ∈ X : dX(q, x) < C0
√

2d+ 6σ
q

log 1
σ
}.

Choose a constant 0 < σ0 ≤ 1 such that C0
√

2d+ 6σ0
p

log σ� 1
0 < δ� .
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We first consider the case when 0 < σ < σ0. Since Eq is a differmorphism on Bδ∗(0),

using the equality (3.1), we have B q
σ ⊂ Eq (Bδ∗(0)) and B q

σ = {Eq (
P d

i=1 u
ieq

i ) : u ∈ eBσ},

where

eBσ :=

�
u ∈ IRd : ‖u‖ < C0

√
2d+ 6σ

r

log
1

σ

�
. (3.7)

For u = (u1, . . . , ud) ∈ IRd, denote φq (u) = Eq (
P d

i=1 u
ieq

i ), then B q
σ = φq ( eBσ).

Using (3.1) and the inequality (3.4) in Proposition 2, we have

�
�d2

X(q, φq (u)) − ‖q − φq (u)‖2
�
� =

�
�‖u‖2 − ‖q − φq (u)‖2

�
� ≤ Cpd

4
X(q, φq (u)) = Cp ‖u‖4.

By the definition of δ� , dX(q, φq (u)) = ‖u‖ < δ� ≤ min
� 1√

2Cp
, δp

	
. Hence,

1

2
‖u‖2 ≤ ‖φq (u) − q‖2 ≤ 3

2
‖u‖2 ∀u ∈ eBσ. (3.8)

In addition, by the inequality (3.3) in Proposition 2,

1

2
≤

q
det(gq

ij)(u
1, u2, · · · , ud) ≤ 3

2
∀u ∈ eBσ. (3.9)

Decompose the domain X into two parts B q
σ and X\B q

σ . We have
Z

X

Kσ(q, y)dV (y) =

Z

Bq
σ

Kσ(q, y)dV (y) +

Z

XnBq
σ

Kσ(q, y)dV (y) := J1(q) + J2(q).

Using the local representation of the Riemannian volume measure under the q-normal coor-

dinates involving a measurable function h on B q
σ :

Z

Bq
σ

h(y)dV (y) =

Z

B̃σ

h(φq (u))
q
det(gq

ij)(u)du, (3.10)

the first term J1(q) is

J1(q) =

Z

B̃σ

exp

�
− ‖q − φq (u)‖2

2σ2

� q
det(gq

ij)(u)du.

By the inequalities (3.8) and (3.9), we have

J1(q) ≤ 3

2

Z

B̃σ

exp

�
− ‖u‖2

4σ2

�
du ≤ 3

2

Z

IRd

exp

�
− ‖u‖2

4σ2

�
du.

Using the radial coordinates in IRd, for any univariate function ψ(r) : IR+ 7→ IR, we have the

following equality for the radial function ψ(‖y‖):
Z

IRd

ψ(‖y‖)dy =
2πd/2

Γ(d/2)

Z 1

0
ψ(r)rd� 1dr, (3.11)

12



where Γ is the Gamma function given for α ∈ (0,∞) by Γ(α) =
R1

0 rα� 1e� rdr.

Applying (3.11) to the function ψ(r) = e� r2

4σ2 , we have J1(q) ≤ 3 · 2d� 1π
d
2σd.

As for the second term J2(q), we notice that for y ∈ X\B q
σ , the restriction dX(q, y) ≥

C0
√

2d+ 6σ
q

log 1
σ

together with (3.5) implies ‖q − y‖ ≥
√

2d+ 6σ
q

log 1
σ
. Thus

J2(q) ≤
Z

XnBq
σ

exp

�
−

(2d+ 6)σ2 log 1
σ

2σ2

�
dV (y)

=

Z

XnBq
σ

σd+3dV (y) ≤ Vol(X)σd.

Combining the estimates for J1(q) and J2(q), for 0 < σ < σ0, we have
Z

X

Kσ(q, y)dV (y) ≤
�
3 · 2d� 1π

d
2 + Vol(X)

	
σd.

For the case σ ≥ σ0, it is easy to see from e� r ≤ 1 for r ≥ 0 that
Z

X

Kσ(q, y)dV (y) ≤ Vol(X) ≤ Vol(X)

σd
0

σd.

This proves the desired result with the constant eCX = 3 · 2d� 1π
d
2 + Vol(X) +

Vol(X)
σd
0

.

Remark 1. In the proof of Lemma 2, we only need Wp instead of W 0
p . To be consistent with

later discussion, we use W 0
p here.

3.3 Some ideas for proving Theorem 2

Since ‖Iσ(f) − f‖p
Lp(X) =

R
X

�
� R

X
exp

�
− kx� yk2

2σ2

	
f(y)dV (y) − f(x)

�
�pdV (x) involves two lay-

ers of integrals, we need to decompose it twice to make the integral computable in local

coordinates.

Let W 0
p ,P and σ0 be as in §3.2, we know that X ⊆ ∪p2P W

0
p . Thus ‖Iσ(f) − f‖Lp(X) ≤

P
p2P

� R
W ′

p
|Iσ(f)(x) − f(x)|pdV (x)

	 1
p . It will be seen in the following Proposition 4 that

the operator Iσ : Lp(X) 7→ Lp(X) is uniformly bounded (the bound is independent of

σ). Furthermore, C1 (X) is dense in Hp
2 (X). Thus the problem becomes to estimate

R
W ′

p
|Iσ(f)(x) − f(x)|pdV (x) for each p ∈ P , σ ≤ σ0 and f ∈ C1 (X).

Note that Iσ(f) in the expression
R

W ′
p

|Iσ(f)(x) − f(x)|pdV (x) still contains an integral

over the whole manifold X. We need to decompose it further. Let q ∈ W 0
p . Choose B q

σ and
eBσ as in §3.2.

13



Separating the domain X into two parts B q
σ and X \B q

σ , we have

Iσ(f)(q) =
1

(
√

2πσ)d

Z

Bq
σ

Kσ(q, y)f(y)dV (y) +
1

(
√

2πσ)d

Z

XnBq
σ

Kσ(q, y)f(y)dV (y).

The second term of the above equation can be easily bounded due to the fast decay of

Kσ(q, y). Using (3.10), the first term equals

1

(
√

2πσ)d

Z

B̃σ

exp

�
− ‖q − φq (u)‖

2σ2

�
f(φq (u))

q
det(gq

ij)(u)du. (3.12)

For approximation in C(X), the quantity |f
�
φq (u)

�
| can be easily bounded by the uniform

norm ‖f‖C(X).

For Lp approximation, we need to tackle the following problem.

Question 1: How can one bound the expression (3.12) in terms of ‖f‖Hp
2 (X) by treating

f(φq (u)) properly?

In the further decompositions, the term f(φq (u)) − f(q) naturally appears. Since f ∈
C1 (X) ⊂ Hp

2 (X), it reminds us of the Taylor expansion of f(φq (u)) in its integral form.

We denote by Dkh the kth derivative of a function h on the Euclidean space IRd. That

is, the components of Dkh are given by (Dkh)i1��� id = ∂i1��� idh, where (i1, · · · , id) ∈ IRd and

i1 + · · · + id = k. Then

f(φq (u)) − f(q) = 〈∇f(q),
dX

i=1

eq
i u

i〉 +

Z 1

0
(1 − y)D2(f(φq (yu)))(u, u)dy. (3.13)

Question 2: How can one bound (3.13) in terms of ‖f‖Hp
2 (X) by handling D2(f(φq (yu)))

properly?

The above two problems will essentially be solved by the following Proposition 3. It gives

us bounds of
R

W ′
p

|f
�
φq (u)

�
|pdV (q) and

R
W ′

p

�
�D2(f ◦ φq )(u)

�
�pdV (q) in terms of ‖f‖Hp

2 (X).

Proposition 3. Let p ∈ X and φq (u) = Eq
� P d

i=1 u
ieq

i

�
for u = (u1, u2, · · ·ud) ∈ IRd and

q ∈ W 0
p = Wp ∩ Ep (Bδp/2(0)). Then there exists a constant δ0

p satisfying 0 < δ0
p ≤ δp

2 such

that for all ‖u‖ ≤ δ0
p , we have

Z

W ′
p

|f
�
φq (u)

�
|pdV (q) ≤ C0

p

Z

X

|f(q)|pdV (q) ∀f ∈ Lp(X) (3.14)

Z

W ′
p

�
�D2(f ◦ φq )(u)

�
�pdV (q) ≤ C00

p ‖f‖p
Hp

2 (X) ∀f ∈ Cp
2(X), (3.15)

where C0
p and C00

p are two constants independent of f or u.
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Proof. Let W �
p be as in Proposition 1. Let q = φp (x) ∈ W �

p and eh(x, u) = h(φp (x), u) =

φq (u). Write
R

W ′
p

�
�f(φq (u))

�
�pdV (q) in the p-normal coordinate, we know that

Z

W ′
p

|f(φq (u))|pdV (q) =

Z

f x2 IRd:φp(x)2W ′
pg

�
�f(eh(x, u))

�
�p

q
det gp

ij(x)dx. (3.16)

From the definition of gp
ij(x), we know that

q
det gp

ij(x) > 0 for all ‖x‖ < δp . On the other

hand, dX(p,eh(x, u)) ≤ dX(p, φp (x)) + dX(q, φq (u)) ≤ δp
2 + ‖u‖ ≤ δp for all (x, u) ∈ B1 :=

{(x, u)) : φp (x) ∈ W 0
p , ‖u‖ ≤ δp

2 }. Thus
q

det gp
ij ◦ (φp )� 1 ◦ eh(x, u) > 0 for all (x, u) ∈ B1.

Let g(x, u) = (φp )� 1 ◦ eh(x, u) and J(x, u) be the Jacobian of g(x, u) with respect to the

variable x, i.e.,

J(x, u) =

�
�
�
�
�
�
�

∂g1(x,u)
∂x1

∂g1(x,u)
∂x2 · · · ∂g1(x,u)

∂xd

...
...

. . .
...

∂gd(x,u)
∂x1

∂gd(x,u)
∂x2 · · · ∂gd(x,u)

∂xd

�
�
�
�
�
�
�
.

It is easy to see that g(x, 0) = (φp )� 1 ◦ eh(x, 0) = x. Hence J(x, 0) = 1. Since J(x, u) is

continuous on the compact set B1, there exists a constant 0 < δ0
p ≤ δp

2 such that J(x, u) > 0

for all (x, u) ∈ B2 := {(x, u) : φp (x) ∈ W 0
p , ‖u‖ ≤ δ0

p }.

Therefore, the function

√
det gp

ij(x)√
det gp

ij � (φp)−1� h̃(x,u)J(x,u)
is well defined and continuous on the

compact set B2. So the constant

C0
p := max

(x,u)2B2

q
det gp

ij(x)
q

det gp
ij ◦ (φp )� 1 ◦ eh(x, u)J(x, u)

is positive and finite. It follows that (3.16) can be bounded as

Z

W ′
p

|f(φq (u))|pdV (q)

≤ C0
p

Z

f x2 IRd:φp(x)2W ′
pg

�
�f(eh(x, u))

�
�p

q
det gp

ij ◦ (φp )� 1 ◦ eh(x, u)J(x, u)dx

= C0
p

Z

W ′
p

|f(φq (u))|pdV (φq (u)) ≤ C0
p

Z

X

|f(q)|pdV (q) (3.17)

by a change of variables x ∈ φq (u). This proves the inequality (3.14).

As to the second inequality (3.15), denote ef(u) := f ◦φp (u) and g(q, u) := (φp )� 1 ◦φq (u),

then

f(φq (u)) = f ◦ φp ◦ (φp )� 1 ◦ φq (u) = ef ◦ g(q, u).
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Let y = g(q, u), by the chain rule,

�
D(f ◦ φq )(u)

�
i
=

dX

k=1

∂ ef(y)

∂yk
· ∂gk(q, u)

∂ui

and

�
D2(f ◦ φq )(u)

�
ij

=
dX

k,`=1

∂2 ef(y)

∂yk∂y`
· ∂gk(q, u)

∂ui

∂g`(q, u)

∂uj
+

dX

k=1

∂ ef(y)

∂yk

∂2gk(q, u)

∂ui∂uj
.

Since the function g(q, u) is C1 on {(q, u) : q ∈ W 0
p , ‖u‖ ≤ δp }, we have

C1 := sup
q 2W ′

p,kuk� δp,1� k,`,i,j� d

�
�
�
�
∂gk(q, u)

∂ui

�
�
�
� ·

�
�
�
�
∂g`(q, u)

∂uj

�
�
�
� < ∞,

C2 := sup
q 2W ′

p,kuk� δp,1� k,i,j� d

�
�
�
�
∂2gk(q, u)

∂ui∂uj

�
�
�
� < ∞.

Hence �
�
�
�
�
D2(f ◦ φq )(u)

�
ij

�
�
�
� ≤ C1

dX

k,`=1

�
�
�
�
∂2 ef(y)

∂yk∂y`

�
�
�
� + C2

dX

k=1

�
�
�
�
∂ ef(y)

∂yk

�
�
�
� . (3.18)

Applying the local representation of ∇f and ∇2f under the p-normal coordinate, we know

that

∂2 ef(y)

∂yk∂y`
=

�
∇2f

�
φq (u)

�
�

k`

+
dX

m=1

Γm
k`

�
g(q, u)

�
�

∇f
�
φq (u)

�
�

m

,
∂ ef(y)

∂yk
=

�
∇f

�
φq (u)

�
�

k

.

Denote C3 := supq 2W ′
p,kuk� δp,1� k,`,m� d

�
�Γm

k`

�
g(q, u)

� �
� , we can bound (3.18) further as

�
�
�
�
�
D2(f ◦ φq )(u)

�
ij

�
�
�
� ≤ C1

dX

k,`=1

�
�
�
�

�
∇2f

�
φq (u)

�
�

k`

�
�
�
� + (C2 + d2C1C3)

dX

k=1

�
�
�
�

�
∇f

�
φq (u)

�
�

k

�
�
�
� .

This together with the elementary inequality (
P m

i=1 |ai|)p ≤ mp
P m

i=1 |ai|p implies that

�
�D2(f ◦ φq )(u)

�
�p ≤ 3pdp+2(C1 + C2 + d2C1C3)

p

� �
�∇2f

�
φq (u)

� �
�p +

�
�∇f

�
φq (u)

� �
�p

�
. (3.19)

Integrating over W 0
p with respect to q and using the inequality (3.14), we get the desired

result.

Proposition 3 yields the following lemma that will be frequently used in proving Theorem

2.
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Lemma 3. Let W 0
p = Wp ∩ Ep

�
Bδp/2(0)

�
and eBσ be given by (3.7). Let δ0

p and C0
p be

the constants in Proposition 3. Set δ� = minp2P min{δ0
p ,

1√
2Cp

} and σ0 ∈ (0, 1] satisfying

C0
√

2d+ 6σ0
p

log σ� 1
0 < δ� . Assume h is a measurable function on IRd and f ∈ Lp(X) with

p ≥ 1. Then

� Z

W ′
p

�
�
�
�

Z

B̃σ

h(u)f(φq (u))du

�
�
�
�

p

dV (q)

� 1
p

≤ (C0
p )

1
p ‖f‖Lp(X)

Z

B̃σ

|h(u)|du. (3.20)

Proof. By the definition of eBσ, we know that for u ∈ eBσ, ‖u‖ < δ� ≤ δ0
p . Then the case

p = 1 follows from (3.14) and a change of order of integrals.

When p > 1, let q = p
p� 1 and write |h(u)| = |h(u)|

1
p

+ 1
q . Then using the Hölder inequality

and (3.14), we have

� Z

W ′
p

�
�
�
�

Z

B̃σ

h(u)f(φq (u))du

�
�
�
�

p

dV (q)

� 1
p

≤
� Z

W ′
p

� Z

B̃σ

|h(u)|du
� p

q
Z

B̃σ

|h(u)||f(φq (u))|pdudV (q)

� 1
p

=

�� Z

B̃σ

|h(u)|du
� p

q
Z

B̃σ

|h(u)|
Z

W ′
p

|f(φq (u))|pdV (q)du

� 1
p

≤ (C0
p )

1
p ‖f‖Lp(X)

Z

B̃σ

|h(u)|du.

This proves (3.20) in the case p > 1.

3.4 Uniform boundedness of linear operators

We give the uniform boundedness of the operator Iσ : Lp(X) 7→ Lp(X) defined by (2.4). It

will be used not only for the proof of Theorem 2, but also for deriving Theorem 1.

Proposition 4. Let Iσ : Lp(X) 7→ Lp(X) be defined by (2.4). Then

‖Iσ(f)‖Lp(X) ≤ C0
X‖f‖Lp(X) ∀σ > 0, f ∈ Lp(X), (3.21)

where C0
X is a constant independent of σ or f .

Proof. Let W 0
p , δ

0
p , δ

� and σ0 be given in Lemma 3 and P be a finite subset of X such that
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X ⊆ ∪p2P W
0
p . For σ ≥ σ0,

‖Iσ(f)‖Lp(X) =
1

(
√

2πσ)d

� Z

X

�
�
�
�

Z

X

exp

�
− ‖x− y‖2

2σ2

�
f(y)dV (y)

�
�
�
�

p

dV (x)

� 1
p

≤ 1

(
√

2πσ)d

� Z

X

�
�
�
�

Z

X

|f(y)|dV (y)

�
�
�
�

p

dV (x)

� 1
p

≤ (Vol(X))
1
p

(
√

2πσ)d

Z

X

|f(y)|dV (y) ≤ Vol(X)

(
√

2πσ0)d
‖f‖Lp(X).

For 0 < σ < σ0, we know from the inequality

‖Iσ(f)‖Lp(X) ≤
X

p2P

( Z

W ′
p

|Iσ(f)(q)|pdV (q)

) 1
p

that it is sufficient to prove for each p ∈ P ,

� Z

W ′
p

|Iσ(f)(q)|pdV (q)

� 1
p

≤ C0
X,p ‖f‖Lp(X) ∀0 < σ < σ0. (3.22)

In fact we get (3.21) by setting C0
X = max

�
Vol(X)
(
p

2πσ0)d ,
P

p2P C0
X,p

�
.

Now we prove (3.22) for each p ∈ P . Let 0 < σ < σ0.

For any q ∈ W 0
p , choose B q

σ ,
eBσ as in §3.2. Decompose the domain X into two parts B q

σ

and X\B q
σ . We have from (3.10)

Iσ(f)(q) =
1

(
√

2πσ)d

Z

B̃σ

exp

�
− ‖q − φq (u)‖2

2σ2

�
f(φq (u))

q
det(gq

ij)(u)du

+
1

(
√

2πσ)d

Z

XnBq
σ

Kσ(q, y)f(y)dV (y)

:= J1(q) + J2(q).

For the first term J1(q), we see from (3.8) and (3.9) that

J1(q) ≤ 3

2(
√

2πσ)d

Z

B̃σ

exp

�
− ‖u‖2

4σ2

�
|f(φq (u))| du. (3.23)

By inequality (3.20) in Lemma 3 with h(u) = 3
2(

p
2πσ)d exp

�
− kuk2

4σ2

	
, we have

� Z

W ′
p

|J1(q)|pdV (q)

� 1
p

≤ (C0
p )

1
p ‖f‖Lp(X)

Z

B̃σ

h(u)du.
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By a change of variables u
σ

and the equation (3.11), we have

Z

B̃σ

h(u)du ≤ 3

2
(2π)� d

2

Z

IRd

exp

�
− ‖u‖2

4

�
du = 3 · 2

d
2

� 1.

Therefore,
� Z

W ′
p

|J1(q)|pdV (q)

� 1
p

≤ 3 · 2
d
2

� 1(C0
p )

1
p ‖f‖Lp(X). (3.24)

As for the second term J2(q), we notice that for y ∈ X\B q
σ , the restriction dX(q, y) ≥

C0
√

2d+ 6σ
q

log 1
σ

yields ‖q − y‖ ≥
√

2d+ 6σ
q

log 1
σ
. Thus

|J2(q)| =

�
�
�
�

1

(
√

2πσ)d

Z

XnBq
σ

Kσ(q, y)f(y)dV (y)

�
�
�
�

≤ 1

(
√

2πσ)d

Z

XnBq
σ

exp

�
−

(2d+ 6)σ2 log 1
σ

2σ2

�
|f(y)|dV (y)

≤ (2π)� d/2σ3
Z

X

|f(y)|dV (y).

Hence

� Z

W ′
p

|J2(q)|pdV (q)

� 1
p

≤ (2π)� d/2σ3
� Z

W ′
p

�
�
�
�

Z

X

|f(y)|dV (y)

�
�
�
�

p

dV (q)

� 1
p

≤ (2π)� d/2Vol(X)‖f‖Lp(X)σ
3

≤ (2π)� d/2Vol(X)‖f‖Lp(X). (3.25)

Combining this with the inequality (3.24), we get the desired bound (3.22).

3.5 Proof of Theorem 2

Now we can prove Theorem 2.

Proof of Theorem 2: Let W 0
p , δ

0
p , δ

� and σ0 be given in Lemma 3 and P be a finite

subset of X such that X ⊆ ∪p2P W
0
p . We have ‖Iσ(f) − f‖Lp(X) ≤

P
p2P

� R
W ′

p
|Iσ(f)(q) −

f(q)|pdV (q)
	 1

p . Note that C1 (X) is dense in Hp
2 (X). Together with the inequality (3.21) in

Proposition 4, the inequality (2.5) is verified with CX = max
�
(C0

X + 1)σ� 2
0 ,

P
p2P CX,p

	
if

we can prove that for f ∈ C1 (X) and p ∈ P ,

� Z

W ′
p

|Iσ(f)(x) − f(x)|pdV (x)

� 1
p

≤ CX,p ‖f‖Hp
2 (X)σ

2 ∀0 < σ < σ0. (3.26)

19



We prove (3.26) in three steps. Let 0 < σ < σ0.

Step 1: Decomposition. Let q ∈ W 0
p . Choose B q

σ ,
eBσ as in §3.2. By the identity

1
(
p

2πσ)d

R
IRd exp{−kuk2

2σ2 }du = 1 , we can decompose f(q) as

f(q) =
1

(
√

2πσ)d

Z

B̃σ

exp

�
− ‖u‖2

2σ2

�
f(q)du+

1

(
√

2πσ)d

Z

IRdnB̃σ

exp

�
− ‖u‖2

2σ2

�
f(q)du.

Separate the integral on X for Iσ(f)(q) to two parts on B q
σ and X\B q

σ , we have

Iσ(f)(q) − f(q) = J1(q) + J2(q) (3.27)

where

J1(q) =
1

(
√

2πσ)d

Z

B̃σ

�
exp

�
− ‖q − φq (u)‖2

2σ2

�
f(φq (u))

q
det(gq

ij)(u)

− exp

�
− ‖u‖2

2σ2

�
f(q)

�
du,

J2(q) =
1

(
√

2πσ)d

Z

XnBq
σ

Kσ(q, y)f(y)dV (y) − 1

(
√

2πσ)d

Z

IRdnB̃σ

exp

�
− ‖u‖2

2σ2

�
f(q)du.

Step 2: Estimation of
� R

W ′
p

|J1(q)|pdV (q)
	 1

p . We separate the error further as

J1(q) =
1

(
√

2πσ)d

Z

B̃σ

�
exp

�
− ‖q − φq (u))‖2

2σ2

�
− exp

�
− ‖u‖2

2σ2

��
f(φq (u))du

+
1

(
√

2πσ)d

Z

B̃σ

exp

�
− ‖q − φq (u)‖2

2σ2

�
f(φq (u))

� q
det gq

ij(u) − 1
�
du

+
1

(
√

2πσ)d

Z

B̃σ

exp

�
− ‖u‖2

2σ2

�
�
f(φq (u)) − f(q)

�
du

:= J11(q) + J12(q) + J13(q).

For J11(q), we use (3.4) and the elementary inequality |e� a −e� b| ≤ |a− b| max{e� a, e� b}
(valid for any a, b > 0) and find that

|J11(q)| ≤ 1

(
√

2πσ)d

Z

B̃σ

�
�
�
� exp

�
− ‖q − φq (u)‖2

2σ2

�
− exp

�
− ‖u‖2

2σ2

� �
�
�
� |f(φq (u))|du

≤ 1

(
√

2πσ)d

Z

B̃σ

max

�
exp

�
− ‖q − φq (u)‖2

2σ2

�
, exp

�
− ‖u‖2

2σ2

��
Cp ‖u‖4

2σ2 |f(φq (u))|du.

So by (3.8),

|J11(q)| ≤
Z

B̃σ

1

(
√

2πσ)d
exp

�
− ‖u‖2

4σ2

	 Cp ‖u‖4

2σ2 |f(φq (u))|du.
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It follows from (3.20) in Lemma 3 with h(u) := 1
(
p

2πσ)d exp
�

− kuk2

4σ2

	 Cpkuk4

2σ2 that

� Z

W ′
p

|J11(q)|pdV (q)

� 1
p

≤ (C0
p )

1
p ‖f‖Lp(X)

Z

B̃σ

h(u)du.

By a change of variables u
σ

and the equation (3.11), we have

Z

B̃σ

h(u)du ≤ Cp

2
(2π)� d

2σ2
Z

IRd

exp

�
− ‖u‖2

4

�
‖u‖4du =

2
d
2

+3CpΓ(d+4
2 )

Γ(d
2)

σ2.

Hence � Z

W ′
p

|J11(q)|pdV (q)

� 1
p

≤
2

d
2

+3Cp (C0
p )

1
p Γ(d+4

2 )

Γ(d
2)

‖f‖Lp(X)σ
2. (3.28)

For J12(q), we use (3.3) and (3.8) and obtain

|J12(q)| ≤ Cp

(
√

2πσ)d

Z

B̃σ

exp

�
− ‖u‖2

4σ2

�
‖u‖2|f(φq (u))|du.

Thus using (3.20) in Lemma 3 with h(u) = Cp

(
p

2πσ)d exp
�

− kuk2

4σ2

	
‖u‖2, we obtain

� Z

W ′
p

|J12(q)|pdV (q)

� 1
p

≤
2

d
2

+2Cp (C0
p )

1
p Γ(d+2

2 )

Γ(d
2)

‖f‖Lp(X)σ
2. (3.29)

For the last term J13(q) of J1(q), we apply the Taylor expansion (3.13) and get the

following further decomposition:

J13(q) =
1

(
√

2πσ)d

Z

B̃σ

exp

�
− ‖u‖2

2σ2

�
〈∇f(q),

dX

i=1

eq
i ui〉du

+
1

(
√

2πσ)d

Z

B̃σ

exp

�
− ‖u‖2

2σ2

� Z 1

0
(1 − y)D2(f(φq (yu)))(u, u)dydu

:= J0
13(q) + J00

13(q). (3.30)

Since
1

(
√

2πσ)d

Z

IRd

exp

�
− ‖u‖2

2σ2

�
〈∇f(q),

dX

i=1

eq
i u

i〉du = 0,

we have

|J0
13(q)| ≤ 1

(
√

2πσ)d

Z

IRdnB̃σ

exp

�
− ‖u‖2

2σ2

�
|∇f(q)|‖u‖du. (3.31)
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Let q = p
p� 1 when p > 1 and denote hσ(u) := 1

(
p

2πσ)d exp
�

− kuk2

2σ2

	
‖u‖. Then using the

Hölder inequality, we get

� Z

W ′
p

|J0
13(q)|pdV (q)

� 1
p

≤
� Z

W ′
p

� Z

IRdnB̃σ

hσ(u)du

� p
q

Z

IRdnB̃σ

hσ(u)|∇f(q)|pdudV (q)

� 1
p

≤ ‖f‖Hp
2 (X)

Z

IRdnB̃σ

1

(
√

2πσ)d
exp

�
− ‖u‖2

2σ2

�
‖u‖du

= ‖f‖Hp
2 (X)

21� dσ

Γ(d
2)

Z

r� C0

p
2d+6

√
log 1

σ

exp

�
− r2

2

�
rddr

≤ ‖f‖Hp
2 (X)

21� dσ

Γ(d
2)

Z

r� C0

p
2d+6

√
log 1

σ

exp

�
− C2

0(2d+ 6)(log σ� 1)

4

�
exp

�
− r2

4

�
rddr

≤
21� d‖f‖Hp

2 (X)σ
1+ d+3

2
C2

0

Γ(d
2)

Z 1

0
exp

�
− r2

4

�
rddr ≤

2Γ(d+1
2 )

Γ(d
2)

‖f‖Hp
2 (X)σ

2. (3.32)

The proof for (3.32) in the case p = 1 follows directly from a change of order of integrals.

As for the term J00
13(q), it is easy to see that

|J00
13(q)| ≤ 1

(
√

2πσ)d

Z

B̃σ

exp

�
− ‖u‖2

2σ2

� Z 1

0
(1 − y)

�
�D2(f ◦ φq )(yu)

�
�‖u‖2dydu.

For u ∈ eBσ, by (3.15) and the Hölder inequality when p > 1, we get

Z

W ′
p

�
�
�
�

Z 1

0
(1 − y)

�
�D2(f ◦ φq )(yu)

�
�dy

�
�
�
�

p

dV (q)

≤
Z

W ′
p

� Z 1

0
(1 − y)dy

� p
q

Z 1

0
(1 − y)

�
�D2(f ◦ φq )(yu)

�
�pdydV (q)

≤
� Z 1

0
(1 − y)dy

� p

C00
p ‖f‖p

Hp
2 (X) =

C00
p

2p
‖f‖p

Hp
2 (X).
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Denote ehσ(u) := 1
(
p

2πσ)d exp
�

− kuk2

2σ2

	
‖u‖2. Then using the Hölder inequality, we know that

� Z

W ′
p

|J00
13(q)|pdV (q)

� 1
p

≤
� Z

W ′
p

� Z

B̃σ

ehσ(u)du

� p
q

Z

B̃σ

ehσ(u)

�
�
�
�

Z 1

0
(1 − y)|D2(f ◦ φq )(yu)|dy

�
�
�
�

p

dudV (q)

� 1
p

≤ 1

2
(C00

p )
1
p ‖f‖Hp

2 (X)

Z

B̃σ

1

(
√

2πσ)d
exp

�
− ‖u‖2

2σ2

�
‖u‖2du

≤ (C00
p )

1
p
Γ(d+2

2 )

Γ(d
2)

‖f‖Hp
2 (X)σ

2.

This together with (3.32) yields

� Z

W ′
p

|J13(q)|pdV (q)

� 1
p

≤ ((C00
p )

1
p + 2)

Γ(d+2
2 )

Γ(d
2)

‖f‖Hp
2 (X)σ

2.

Combining the estimates for J11(q), J12(q) and J13(q), we have

( Z

W ′
p

|J1(q)|pdV (q)

) 1
p

≤
�

2
d
2

+4Cp (C0
p )

1
p + (C00

p )
1
p + 2

�
Γ(d+4

2 )

Γ(d
2)

‖f‖Hp
2 (X)σ

2. (3.33)

Step 3: Estimation of
� R

W ′
p

|J2(q)|pdV (q)
	 1

p . Denote the two terms in the expression

of J2(q) as J0
2(q) and J00

2 (q). The first term J0
2(q) of J2(q) has been estimated in the proof

of Proposition 4 as (3.25). Hence

� Z

W ′
p

|J0
2(q)|pdV (q)

� 1
p

≤ (2π)� d/2Vol(X)‖f‖Lp(X)σ
2. (3.34)

Now we bound the second term of J2(q). Using (3.11) again, we have

|J00
2 (q)| =

�
�
�
�

1

(
√

2πσ)d

Z

IRdnB̃σ

exp

�
− ‖u‖2

2σ2

�
f(q)du

�
�
�
�

≤ |f(q)|
(
√

2πσ)d

Z

kuk� C0

p
2d+6σ(log σ−1)1/2

exp

�
− ‖u‖2

2σ2

�
du

=
21� d

2

Γ(d
2)

|f(q)|
Z

r� C0

p
2d+6(log σ−1)1/2

exp

�
− r2

2

�
rd� 1dr

≤ 21� d
2

Γ(d
2)

|f(q)|
Z

r� C0

p
2d+6(log σ−1)1/2

exp

�
− C2

0(2d+ 6)(log σ� 1)

4

�
exp

�
− r2

4

�
rd� 1dr

≤ 21� d
2

Γ(d
2)

|f(q)|
Z 1

0
σ

d+3
2

C2
0 exp

�
− r2

4

�
rd� 1dr = 2

d
2 |f(q)|σ

d+3
2

C2
0 .
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But C0 ≥ 1 and d ≥ 1, so there holds

� Z

W ′
p

|J00
2 (q)|dV (q)

� 1
p

≤ 2
d
2σ2

� Z

W ′
p

|f(q)|pdV (q)

� 1
p

≤ 2
d
2 ‖f‖Lp(X)σ

2.

Combining this with (3.34), we get

� Z

W ′
p

|J2(q)|dV (q)

� 1
p

≤
�

(2π)� d
2 Vol(X) + 2

d
2

�
‖f‖Lp(X)σ

2.

This together with (3.33) yields the desired estimate (3.26).

4 Learning Rates

In this section, we derive learning rates for the multi-kernel classification algorithm (1.9) in

the manifold setting, especially for the case of SVM. This is done by balancing the sample

error and the regularization error [SZ2, WYZ, WZ].

We need the following result from [26] where we have changed some notation in order to

make it consistent with this paper.

The regularization error of the algorithm (1.9) is defined as

D(λ) = min
σ2 (0,1 )

min
f2H Kσ

�
Eφ(f) − Eφ(f

φ
ρ ) + λ‖f‖2

Kσ

�
, λ > 0. (4.1)

Denote

Cλ = sup

�
max{|φ0

� (t)|, |φ0
+(t)|} : |t| ≤

r
|φ(0)|
λ

�
. (4.2)

Proposition 5. Let X be a subset of IRn and φ be admissible with Cλ < ∞. Define fz,λ by

(1.9). Then we have

E
�
Eφ(fz,λ) − Eφ(f

φ
ρ )

�
≤ Cλ

r
C0|φ(0)|

λ

�
log2 m

m

� 1/4

+
2|φ(0)|√

m
+ D(λ), (4.3)

where C0 is a constant independent of m or λ.

For the SVM case, we have a simplified version of Proposition 5.
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Proposition 6. Let φ(x) = (1 − x)+ = max{0, 1 − x} and X ⊂ IRn. Define fz,λ by (1.9).

If 0 < λ < 1, then there exists a constant C0 independent of m or λ such that

E
�
Eφ(fz,λ) − Eφ(fc)

�
≤

r
C0

λ

�
log2 m

m

� 1/4

+ D(λ). (4.4)

Thus if we can estimate the regularization error D(λ) in the manifold setting, the excess

misclassification error can be easily derived using the comparison theorem between the excess

misclassification error and excess generalization error.

4.1 Learning rates for the multi-Gaussian SVM classifier

We begin with the special case of multi-Gaussian SVM classifier. Since fφ
ρ = fc and φ(x) −

φ(y) ≤ |x− y| for the hinge loss, we can bound the regularization error D(λ) as

D(λ) ≤ inf
σ2 (0,1 )

inf
f2H Kσ

�
‖f − fc‖L1

ρX
(X) + λ‖f‖2

Kσ

�
.

Thus we only need to bound infσ2 (0,1 ) inff2H Kσ

�
‖f − fc‖L1

ρX
(X) + λ‖f‖2

Kσ

�
for the SVM

case.

We shall choose f = Iσ(fc) to bound D(λ). So we need to estimate ‖Iσ(fc)‖Kσ .

Lemma 4. Let 1 ≤ p < ∞ and f ∈ Lp(X). Then the function Iσ(f) is in HKσ(X) and

‖Iσ(f)‖Kσ ≤

8
<

:

1
(
p

2π)d ( eCX)
p−1

p ‖f‖Lp(X)σ
� d

p , if 1 ≤ p ≤ 2,

1
(
p

2π)d ( eCX)
1
2 (Vol(X))

1
2

� 1
p ‖f‖Lp(X)σ

� d
2 , if p > 2

=
1

(
√

2π)d
( eCX)1� 1

min{p,2} (Vol(X))
1
2

� 1
max{p,2} ‖f‖Lp(X)σ

� d
min{p,2} (4.5)

where eCX is the constant given by Lemma 2.

Proof. By the definition of Iσ(f) and the equation

〈Kσ(·, y), Kσ(·, z)〉Kσ = Kσ(y, z), (4.6)

we have

‖Iσ(f)‖2
Kσ

=
1

(
√

2πσ)2d

Z

X

Z

X

Kσ(y, z)f(y)f(z)dV (y)dV (z).

25



When p = 1, we get from Kσ(y, z) ≤ 1 that

‖Iσ(f)‖2
Kσ

≤ 1

(
√

2πσ)2d

Z

X

Z

X

|f(y)||f(z)|dV (y)dV (z) =
1

(2π)d
σ� 2d‖f‖2

L1(X),

which proves (4.5) in this case.

When 1 < p ≤ 2, we set q = p
p� 1 and apply the Hölder inequality to the function

(Kσ(y, z))
1
q |f(y)|

p
q · (Kσ(y, z))

1
p |f(y)|1� p

q |f(z)|. Then

‖Iσ(f)‖2
Kσ

≤ 1

(
√

2πσ)2d

� Z

X

Z

X

Kσ(y, z)|f(y)|pdV (y)dV (z)

� 1
q

� Z

X

Z

X

Kσ(y, z)|f(y)|p(1� p
q )|f(z)|pdV (y)dV (z)

� 1
p

. (4.7)

Lemma 2 tells us that
R

X
Kσ(y, z)dV (z) ≤ eCXσ

d for each y ∈ X. So
Z

X

Z

X

Kσ(y, z)|f(y)|pdV (y)dV (z) ≤ eCXσ
d‖f‖p

Lp(X).

On the other hand, for z ∈ X, we apply the Hölder inequality and find
Z

X

Kσ(y, z)|f(y)|p(1� p
q )dV (y) ≤

� Z

X

|f(y)|pdV (y)

� 1� p
q

� Z

X

(Kσ(y, z))
q
p dV (y)

� p
q

.

But q
p
> 1 and Kσ(y, z) ≤ 1. So

R
X

(Kσ(y, z))
q
p dV (y) ≤

R
X
Kσ(y, z)dV (y) ≤ eCXσ

d. Hence
Z

X

Kσ(y, z)|f(y)|p(1� p
q )dV (y) ≤ ‖f‖

p(1� p
q

)
Lp(X) ( eCXσ

d)
p
q .

It follows that

‖Iσ(f)‖2
Kσ

≤ 1

(
√

2πσ)2d

�
eCXσ

d‖f‖p
Lp(X)

� 1
q n

‖f‖
p+p(1� p

q
)

Lp(X) ( eCXσ
d)

p
q

o 1
p

=
eC

2� 2
p

X

(2π)d
‖f‖2

Lp(X)σ
� 2d

p .

That is,

‖Iσ(f)‖Kσ ≤ ( eCX)
p−1

p

(
√

2π)d
‖f‖Lp(X)σ

� d
p .

When p > 2, each function in Lp(X) lies in L2(X):

‖f‖L2(X) =

� Z

X

|f(x)|2dV (x)

� 1
2

≤

( � Z

X

|f(x)|pdV (x)

� 2
p

� Z

X

dV (x)

� 1� 2
p

) 1
2

= (Vol(X))
1
2

� 1
p ‖f‖Lp(X).
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So the desired bound follows from the case p = 2:

‖Iσ(f)‖Kσ ≤ ( eCX)
1
2

(
√

2π)d
‖f‖L2(X)σ

� d
2 ≤ ( eCX)

1
2 (Vol(X))

1
2

� 1
p

(
√

2π)d
‖f‖Lp(X)σ

� d
2 .

This proves the desired inequality (4.5).

Proposition 7. Let X be a connected compact C1 submanifold of IRn without boundary

which is isometrically embedded and of dimension d. If fc ∈ (L1(X), H1
2 (X))θ for some

0 < θ ≤ 1, then

D(λ) ≤

(

(C0
X + 1 + CX)‖fc‖θ +

eCX (Vol(X))2

(2π)d

)

λ
2θ

2θ+d .

Proof. Let σ ∈ (0,∞). For any g ∈ H1
2 (X), we get from Theorem 2 that

‖Iσ(g) − g‖L1(X) ≤ CX‖g‖H1
2 (X)σ

2.

By Proposition 4, we also have

‖Iσ(fc) − Iσ(g)‖L1(X) = ‖Iσ(fc − g)‖L1(X) ≤ C0
X‖g − fc‖L1(X).

Since fc ∈ (L1(X), H1
2 (X))θ, we know that

‖Iσ(fc) − fc‖L1(X) ≤ ‖Iσ(fc) − Iσ(g)‖L1(X) + ‖Iσ(g) − g‖L1(X) + ‖g − fc‖L1(X)

≤ (C0
X + 1)‖g − fc‖L1(X) + CX‖g‖H1

2 (X)σ
2.

Taking infimum over g ∈ H1
2 (X), we get

‖Iσ(fc) − fc‖L1(X) ≤ (C0
X + 1 + CX) inf

g2H1
2 (X)

n
‖g − fc‖L1(X) + σ2‖g‖H1

2 (X)

o

= (C0
X + 1 + CX)K(fc, σ

2) ≤ (C0
X + 1 + CX)‖fc‖θσ

2θ.

Since fc is the Bayes rule, |fc(x)| ≤ 1 for all x ∈ X. Thus ‖fc‖L2(X) ≤
p

Vol(X) and the

regularization error can be bounded as

D(λ) ≤ inf
σ2 (0,1 )

�
‖Iσ(fc) − fc‖L1(X) + λ‖Iσ(fc)‖2

Kσ

	

≤ inf
σ2 (0,1 )

(

(C0
X + 1 + CX)‖fc‖θσ

2θ + λ ·
eCXVol(X)

(2π)d
σ� d

)

≤

(

(C0
X + 1 + CX)‖fc‖θ +

eCXVol(X)

(2π)d

)

λ
2θ

2θ+d ,

where we have chosen σ = λ
1

2θ+d .
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Proof of Theorem 1: An important relation between the excess misclassification error

and the excess generalization error for the hinge loss asserts that [27] for any measurable

function f : X 7→ IR,

R
�
sgn(f)

�
− R(fc) ≤ Eφ(f) − Eφ(fc). (4.8)

This together with Proposition 6 and Proposition 7 yields the desired results.

4.2 Learning rates for general loss functions

We need the following relationship between Eφ(f) − Eφ(f
φ
ρ ) and ‖f − fφ

ρ ‖Lp(X) which can be

derived as Theorem 17 in [21].

Proposition 8. Let X be a subset of IRn and φ be admissible.

(a)If φ is a Lipschitz s classification loss function on IR with Lipschitz constant C, then for

any measurable function f : X 7→ IR,

Eφ(f) − Eφ(f
φ
ρ ) ≤ C

Z

X

|f − fφ
ρ |sdρX ≤ C‖f − fφ

ρ ‖s
L1

ρX
≤ C‖f − fφ

ρ ‖
s
2

L2
ρX

.

(b) If φ is C1 and its derivative is Lipschitz s on IR with Lipschitz constant C, then

Eφ(f) − Eφ(f
φ
ρ ) ≤ C‖f − fφ

ρ ‖1+s

L1+s
ρX

≤ C‖f − fφ
ρ ‖

1+s
2

L2
ρX

.

Motivated by this result, in the following, we assume that for any measurable function

f : X 7→ IR, the excess generalization error satisfies

Eφ(f) − Eφ(f
φ
ρ ) ≤ C‖f − fφ

ρ ‖α
Lp(X), (4.9)

where C, p ≥ 1 and α ∈ IR+ are constants independent of f .

Recall Cλ defined by (4.2). As in [24], we assume that

Cλ ≤ C0λ
� β, for some β ∈ IR+, (4.10)

where C0 is a constant.

Theorem 3. Let φ be an admissible loss function with φ00(0) > 0 satisfying (4.9) and (4.10).

Define fz,λ by (1.9) and fφ
ρ by (1.5). Assume fφ

ρ ∈ (Lp(X), Hp
2 (X))θ for some 0 < θ ≤ 1

and p ≥ 1. Then by taking λ =

�
log2 m

m

� θα min{p,2}+d
2(3+2β)θα min{p,2}+2(2β+1)d

, we have

Ez2Zm

�
R(sgn(fz,λ) − R(fc)

	
= O

 �
log2 m

m

� θα min{p,2}
4(3+2β)θα min{p,2}+4(2β+1)d

!

. (4.11)
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Proof. As in the proof of Proposition 7, we have

‖Iσ(fφ
ρ ) − fφ

ρ ‖Lp(X) ≤ {C0
X + 1 + CX}‖fφ

ρ ‖θσ
2θ,

It follows from inequalities (4.9) and (4.5) that

D(λ) ≤ inf
σ2 (0,1 )

�
C‖Iσ(fφ

ρ ) − fφ
ρ ‖α

Lp(X) + λ‖Iσ(fφ
ρ )‖2

Kσ

	

≤ inf
σ2 (0,1 )

n
C{C0

X + 1 + CX}α‖fφ
ρ ‖α

θσ
2αθ + λ · eC0

Xσ
� 2d

min{p,2}

o
,

where eC0
X = 1

(2π)d ( eCX)2� 2
min{p,2} (Vol(X))1� 2

max{p,2} ‖fφ
ρ ‖2

Lp(X). Taking σ = λ
min{p,2}

2αθ min{p,2}+2d , we

have

D(λ) ≤
n
C{C0

X + 1 + CX}α‖fφ
ρ ‖α

θ + eC0
X

o
λ

αθ min{p,2}
αθ min{p,2}+d . (4.12)

Since φ is an admissible loss function with φ00(0) > 0, it is shown in [8] that there exists a

constant Cφ depending only on φ such that for any measurable function f : X 7→ IR.

R (sgn(f)) − R(fc) ≤ cφ

q
Eφ(f) − Eφ(f

φ
ρ ). (4.13)

Then the stated error bound follows from Proposition 5 and (4.10). This proves Theorem

3.

Now we apply Theorem 3 to q-norm hinge loss φ(x) = (1 − x)q
+ with q > 1.

Corollary 1. Let φ(x) = (1 − x)q
+ with q > 1. Define fz,λ by (1.9) and fφ

ρ by (1.5).

Suppose that there exists a positive constant Cρ such that dρX ≤ CρdV . Assume fφ
ρ ∈

(Lq(X), Hq
2(X))θ for some 0 < θ ≤ 1. If 1 ≤ q ≤ 2, then by taking λ =

�
log2 m

m

� q2θ+d

2(2+q)q2θ+2qd

,

we have

Ez2Zm

�
R(sgn(fz,λ) − R(fc)

	
= O

0

@
�

log2 m

m

� q2θ

4(2+q)q2θ+4qd

1

A . (4.14)

If q > 2, then by taking λ =

�
log2 m

m

� 2θ+d
4(2+q)θ+2qd

, we have

Ez2Zm

�
R(sgn(fz,λ) − R(fc)

	
= O

��
log2 m

m

� θ
4(2+q)θ+2qd

�
. (4.15)
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Proof. For φ(x) = (1 − x)q
+(q > 1), we have the following estimate for the excess generaliza-

tion error by Theorem 25 in [8].

Eφ(f) − Eφ(f
φ
ρ ) ≤

(
‖f − fφ

ρ ‖q
Lq

ρX

, if 1 < q ≤ 2,

q2q� 1‖f − fφ
ρ ‖Lq

ρX
(2q� 1 + ‖f − fφ

ρ ‖q� 1
Lq

ρX

), if q > 2.

Together with the assumption that dρX ≤ CρdV , for the case 1 < q ≤ 2, we can get the

desired results by using Theorem 3 with α = q and β = q� 1
2 . As to the case q > 2, choose

α = 1 and β = q� 1
2 . This is the end of the proof.
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