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Abstract

We confirm by the multi-Gaussian support vector machine (SVM) classification
that the intrinsic dimension of Riemannian manifolds improves the efficiency (learning
rates) of learning algorithms. The essential analysis lies in the study of approximation
in LP (1 <p < oo) of LP functions by their convolutions with the Gaussian kernel with
variance ¢ — 0. This covers the SVM case when the approximated function is the Bayes
rule and is not continuous in general. The approximation error is estimated by imposing
some regularity conditions on the approximated function to lie in some interpolation
spaces. Then the learning rates for multi-Gaussian regularized classifiers with general
classification loss functions are derived, and the rates depend on the intrinsic dimension
of the Riemannian manifold, not the dimension of the underlying Euclidean space. Here
the input space is assumed to be connected compact C! Riemannian submanifold
of IR™ which is isometrically embedded. The uniform normal neighborhoods of the
Riemannian manifold and the radial basis form of Gaussian kernels play an important

role.
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1 Introduction and Multi-Gaussian SVM

Manifold learning has become a hot topic in machine learning recently. It appears naturally
from the observation or belief that high-dimensional data or functions arising from physical
or biological systems can be effectively modeled or analyzed as being concentrated on a
low-dimensional manifold. There have been many tasks for manifold learning demanded by
many applications such as dimensionality reduction [4], feature selection [6, 17, 18], semi-
supervised learning [3], and learning topological statistics [14]. Compared with vast practical
observations and empirical testing, rigorous mathematical analysis in the topic of manifold
learning is rather limited [2, 17, 14, 15, 18].

In [25] we consider the approximation of continuous functions on Riemannian manifolds
by functions from reproducing kernel Hilbert spaces associated with Gaussian kernels. The
obtained order of approximation is applied to the multi-kernel least-square regularization
scheme generated by Gaussians with flexible variances. The derived learning rate is better
than that in the setting of Euclidean space domains, which confirms the belief that the low

dimensionality of manifolds improves the efficiency of learning algorithms.

Many problems in machine learning are about classification where an essential mathe-
matical problem is the approximation of functions in spaces like LP(X), not in C(X). So in
this paper we study the approximation in L?(X) by reproducing kernel Hilbert spaces as-
sociated with Gaussian kernels K, with variances ¢ — 0. Then we apply the approximation
order to get learning rates of multi-Gaussian regularized classifiers with general classi-
fication loss functions. The obtained learning rates depend on the intrinsic dimension of

the Riemannian manifold, not the dimension of the underlying Euclidean space.

Let us mention the setting of binary classification and the special example of support

vector machines.

1.1 Binary classification

Two classes dealt with by binary classification learning algorithms can be represented by

Y = {l1,—1}. The events for which the prediction of classes is desired are points from a



metric space X (called the input space, maybe a subset of IR"). A model used in learning
theory is to assume a probability measure p on Z := X XY then the conditional distribution
of p at  [CXl is a probability distribution p(:]z) on Y. For y =1 or —1 in Y, P(y|z) stands
for the probability for x to belong to the class y. The marginal distribution px of p on X

measures how the events are distributed in X.

A binary classifier is a function C from X to Y. It gives a prediction of class C(x) [CY]
for each event + [ XN. The misclassification error for the classifier C is defined as the

probability of wrong prediction
z

R(f) :=Prob{C(z) By} = Py 8 C(x)|zr)dpx. (1.1)
b
By discussing for each event x [N, we can easily see that a best classifier minimizing
the misclassification error, called the Bayes rule (e.g. [11]), can be expressed as

1, if Py=1|z) = P(y = —1|z),

fol@) = =1, if P(y =1|z) < P(y = —1|x). (1:2)

The purpose of classification algorithms is to find good classifier approximations C, of
the Bayes rule from the random sample z = {(z;, y;)}/%; drawn according to the probability
measure p. We hope that the approximating classifier C, will approach the Bayes rule when
the number of samples increases, in the sense that the excess misclassification error
R(C,) — R(f.) tends to zero with confidence as m — oo.

Most practical algorithms can be expressed mathematically as minimizers of some func-
tionals over some spaces of continuous functions. A binary classifier can be derived from a
continuous function f: X — IR assgn(f): X - Y given by sgn(f)(x) = 1if f(z) =0 and
—1 otherwise. To measure how well sgn( f) can be used for binary classification, we often use
a loss function ¢ : IR - IR+ and the value ¢(yf(x)) as the local error incurred in predicting

y from f(x). Define the generalization error of f with respect to the loss function ¢ as
Z

Es(f) = oyf(x))dp (1.3)

Z

and the empirical error with respect to the loss function ¢ as

xXn
E;(f) = (Y f (). (1.4)

i=1
Many learning algorithms for classification involve this empirical error. Their error analysis

(for the misclassification error) can be done by estimating the excess generalization error
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Es(f) — E4(f7) where f? is the target function defined by

f;f =argmin E,(f): f is a measurable function from X to R . (1.5)

1.2 Support vector machines

Support vector machines form an important class of classification algorithms. As a special
kernel method, they can be expressed in reproducing kernel Hilbert spaces associated with
Mercer kernels.

We say that K : X x X 3 IR is a Mercer kernel if it is continuous, symmetric and

positive semidefinite.

The Reproducing kernel Hilbert space (RKHS) Hy associated with the kernel K is
defined [1] to be the completion of the linear span of the set of functions {K, := K(z,")}.2x
with the inner product [)-0d given by [H,, K,[d = K(z,v).

For example, the Gaussian kernel with variance o [{0, o) defined by

[zl— y 2]
K,(x,y) = exp _Tg , x,y X [CIRP (1.6)

is a Mercer kernel (e. g. [9]).

The important role played by Mercer kernels in kernel methods can be seen from the

regularization scheme for classification problem associated with the RKHS Hg and ¢:

( | )
Jzax =arg min - — ¢ yif(xi) + MI[ZV;' ; (1.7)

f2Hg m .
i=1

where A > 0 is a constant called the regularization parameter. The classifier is given by

the sign function sgn(fz x k). The reproducing property of H:
(. fid = f(r) [ECAf CH (1)

together with the orthogonal Igrojection in the Hilbert space Hg tells us that the minimizer
in (1.7) has the form f, \ x = =, ¢ZK,,. The coefficients (¢f)-, can be computed by solving

an optimization problem which is convex when the loss function ¢ is admissible.

Definition 1. We say that ¢ : R B IR+ s an admissible loss function if it is convex
and differentiable at 0 with ¢%0) < 0.



A special setting is given by the hinge loss ¢(x) = (1 — x)+ := max{0,1 — x}. The
algorithm (1.7) with this special loss function ¢ is the support vector machine in the reg-
ularization form [13]. Its special form ensures that the convex optimization problem for
finding (¢?)™, in f; \ x is actually a convex quadratic programming one and many efficient

interior point methods are available from optimization theory.

The minimizer fg’ for ¢ being the hinge loss is exactly the Bayes rule f.. For the error
analysis in this special case, Zhang [27] showed that R(sgn(f)) — R(f.) < Es(f) — Es(fe)
which in turn [8] can be bounded by [+ f. II%IX . Thus to estimate the excess misclassification
error R(sgn(fzx)) — R(f.) for the efficiency of the SVM algorithm, we need to consider
LA\ x— fe IEPIX, the approximation of the generally discontinuous function f. in the function
space L;X, not in the space C'(X) of all continuous functions on X. So the result from [25]

cannot be used for SVM in the manifold setting. This is one motivation of our study in this

paper.

1.3 Multi-kernel regularized classifiers

It was shown in [8, 19] that when f, lies in the Sobolev space H*(X) with s > 0 and X is a
domain of Euclidean space with nonempty interior, the learning rate of the algorithm (1.7)
with a fixed Gaussian kernel and the least square loss ¢(t) = (1 —t)? is only O((logm) */2).
If we allow flexible variances of Gaussian kernels, things are totally different and getting
polynomial decay for the learning rate is possible [26, 25]. This confirms the usefulness of

flexible variances in applying Gaussian kernels in practice.

In this paper we consider the multi-kernel regularized classifier sgn(fz,\) generated by
the regularization scheme associated with the general loss function ¢ and Gaussians (1.6)
with flexible variances {K, : 0 < 0 < oo} defined as

. N :
[z = arg i m%lf}d — _ ¢ (yif (z:)) + A\ . (1.9)

Though multi-kernel algorithms for regression and classification have been applied ex-
tensively, their error analysis is well understood only if the input space X is a domain of IR"
with nonempty interior and the learning rate is not as fast as expected when the dimension
n of the Euclidean space is large. It was pointed out in [26] that when the input space X is a
low-dimensional manifold embedded in the large-dimensional Euclidean space, the learning

rates may be greatly improved. In such a manifold setting the Fourier transform technique

in [26] can no longer be used and other methods are required.
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We took a step toward this problem in [25], where we obtained satisfactory learning rates
for the multi-kernel regression algorithm with the least square loss by means of uniformly
normal neighborhoods in Riemannian manifolds. But the involved approximation scheme
there cannot be directly used for the classification setting as mentioned in §1.2. The mini-
mizing function f;f associated with the loss function ¢ in the classification problem is often

discontinuous and we need to consider the approximation problem in the space LP(X), not

in C(X).

2 Main Results on Riemannian Manifolds

In what follows we assume that X is a connected compact C* submanifold of IR" without
boundary which is isometrically embedded and of dimension d. Under this assumption, X
is a metric space with a metric dx and the inclusion map @ : (X,dx) - (IR", 10 s well
defined and continuous (actually it is C ). Here [=1[3 the norm in IR". Our assumption
that the embedding map ® is the inclusion map is essential. For a general embedding map
(which always exits according to the Nash Embedding Theorem), we still do not know how

to establish similar results.

For 1 < p < oo, the space LP(X) on X consists of all measurable functions on X with the
1
norm [fIgdxc= |f(2)[PdV(x) * finite, where V is the Riemannian volume measure of
X.

To measure the regularity of functions on X, we need Sobolev spaces on the Riemannian
manifold X. For an integer k and f CCOF (X), [*fldenotes the kth covariant derivative of f
(with the convention [*fl= f). As an example, the components of [fih local coordinates
are given by ( = 0,f, while the components of [2flin local coordinates are given by
(C2F); = 0y f — ?21 Ffj@g f where Ffj is Christoffel symbols of [with respcet to {0;}L,

see [16] for more details.
Definition 2. Let p=1 and k CIN. The Sobolev space HE(X) is the completion of C* (X)
with respect to the norm

x £ y
Fim s | Zrrav .
X

J=0

Recall that the Bayes rule f. is discontinuous in general. Its regularity may not be

satisfactorily characterized by Sobolev spaces Hy (X) with integer indices k. To get suitable
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characterizations, we need interpolation spaces [5] from which one can define Sobolev spaces

of arbitrary indices [12].

Definition 3. Let 0 < § < 1. The interpolation space (LP(X), Hy(X))qs between LP(X) and
HY(X) consists of all functions f TLP(X) such that the norm

K(f,¢
[fTst= sup (]; ) (2.1)
t>0 t
is finite. Here K(f,t) is the K-functional of the pair (LP(X), HY(X)) defined by

g2 HY (X O

The interpolation space (LP(X), H5(X))y is a Banach space between LP(X) (with 6 = 0)
and Hy(X) (with @ = 1). It can be easily seen that the function K(f,¢) of ¢ is continuous,
non-decreasing and bounded by CFLdxm(take g = 0 in (2.2)). Since H5(X) is dense
in LP(X), K(f,t) tends to zero as ¢ — 0. The requirement that the function f lies in
(LP(X), H5(X))g is equivalent to the decay condition K(f,t) = O(t%).

Example 1. Let X = S* = {&* : w IR} [CIR%,p =2 and 0 < a < b < 1. Define a
function f CIF(X) by f(e™) =1 for a < u < b and zero for v []0,27|\[a,b]. Then f is
not in H3(X) since f CHZ(X) would imply f CA(X). But for any 0 < 6 < Z, we have
[ CP(X), HY(X))s. In fact, by choosing g; as

8
i A 2 qu I:m,b]v— Py
Su—(a— 1)) ifu E[H_pftﬂa_T)’

wy_ 1= fu—a) if u m_%ﬁ@’
gi(e™) = 20— 1\2 ; ¢

L=2w—0)  ifuldBbs 5,
Su—(b+ 1) ifu E(]+7t>b+\/ﬂ’

) if w CJ0,27)\[a —  £,0+ ],

we have LA— g Ld(x ot ¢ Lgdld (x o7 O(t1).

Using the regularity condition imposed by interpolation spaces, we can state our first
main result concerning the learning rates of the multi-kernel SVM with flexible Gaussians

on Riemannian manifolds.

Theorem 1. Let X be a connected compact C* submanifold of IR™ without boundary which is
isometrically embedded and of dimension d. Let f, » be defined by (1.9) and ¢(x) = (1—x)+.



20+d
9 1204-2d

If f. CAAMX), H3(X))g for some 0 < 0 <1, then by taking A = 2™ , we have

2 _0
1og m 6604-d

EZZZ"” R(Sgn(fz)\) - R(fc) = @’ m y (23)

where € is a constant independent of m.

Theorem 1 is exciting since the learning rate depends only on the intrinsic dimension d
of the Riemannian manifold X, not on its extrinsic dimension n. As d is very small and
much less than n in many practical problems, our learning rate is satisfactory and convincing
theoretical studies in manifold learning. This is another motivation of our investigation in

this paper.

Our second main result is about the approximation ability of Gaussians on Riemannian
manifolds. This theorem is of importance on its own in approximation theory and it is the

key step to prove Theorem 1.

When X has nonempty interior as a subset of IR"(d = n), the approximation of functions
from various function spaces by Gaussians is a classical topic in approximation theory [12]
and its application in error analysis has been well understood [19, 10, 22]. Things are
totally different when X is a Riemannian submanifold of IR" and little is known. In [25], we
considered the approximation ability of Gaussians on the space C'(X). Here we consider the
approximation on the space LP(X).

Let 1 < p < oo. Define a family of linear operators {I, : LP(X) —» LP(X)},-0 as

1
]O'(f)(x) - _Vl—d KU('I’ y)f(y)dV(y)

(2m0)" X

= —vll—d exp ————— f(y)dV(y), v LAX, (2.4)

( 27m0)" x 202
where V' is the Riemannian volume measure of X.
Note that a d-dimensional manifold is, roughly speaking, a topological space which is
locally Euclidean of dimension d. That’s why we use the scaling factor ZP%TET
Theorem 2. Let X be a connected compact C* submanifold of IR™ without boundary which
is 1sometrically embedded and of dimension d. Let p = 1. Define I, : LP(X) B LP(X) for
o>0by (2.4). If f CHS(X), then we have

(/) — f Heces Ox g ca® @l 0, (2.5)
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where Cx is a positive constant independent of f or o.

The main difficulty in the proof of Theorem 2 (given in Section 3) lies in bounding the
integrals over uniformly normal neighborhoods of the convolutions with Gaussians. This is

different from the approximation in C'(X) where only function values need to be bounded
[25].

Due to a saturation phenomenon in approximation theory, the order of approximation in

(2.5) cannot be further increased for functions in higher order Sobolev spaces.

The methods of deriving learning rates in this paper can be extended to other learning
algorithms on Riemannian manifolds such as online learning for classification [24] and other

L? problems on Riemannian manifolds.

3 L? Approximation on Manifolds by Gaussians

In this section we prove Theorem 2 after some preparation and illustration.

3.1 Some knowledge on Riemannian manifolds

We start with a brief introduction to normal coordinates and uniform normal neighborhoods
(see [14] and [25] in detail). These two basic concepts provide good coordinate systems on
Riemannian manifolds and make computations easier. Denote the tangent space at p [LX
as Tp(X).

Definition 4. For p X and v L (X), let v(t,p,v),t > 0, be the geodesic satisfying
7(0,p,v) = p and vY0,p,v) = v. The exponential map E, : Tp(X) - X is defined by
Ep(v) =~(1,p,v).

By [7], we know that for each p [CXI, there exists a strongly convex neighborhood U, of
p, that is, for any two points qi, qz in the closure Up of Up, there exists a unique minimizing
geodesic v joining qi and g, whose interior is contained in Up. Denote Bs(0) = {v [T (X)) :
|v] < 0} as the ball of T (X) centered at 0 with radius 4.

Definition 5. An open set U [ Xl is called uniformly normal if there exists some § > 0
such that U TEN(Bs(0)) for every q LU



The following proposition (see [25]) tells us the existence of uniform normal neighbor-

hoods having some good properties.

Proposition 1. For every p [Nl there exist neighborhoods Wy and W, and a number o, > 0
such that the following conditions hold:

(a) for every q CIW,, the map E : Bs,(0) CTI(X) - X is a diffeomorphism on Bs,(0);
(b) W, is uniformly normal with respect to oy, that is, W, LEI(Bs,(0)) for every q LW ;
(¢) The closure of Wy is contained in W, and W, LUJ.

Choose an orthonormal basis {es, ez, -+, eq} of T, (X), then for each q [CLH,, the set of
tangent vectors {e;,e,, - ,e,}, moved by parallel transport from p to q along the unique
minimizing geodesic, forms an orthonormal basis of 7' (X). In addition, this frame depends
smoothly on q. According to (a) of Proposition 1Pthe map ¢ from U = {u CH? : I &
S} [R? to X defined by ¢ (u?, -+ ,u?) = E ( le u'e; ) gives a system of coordinates
around q. We call such coordinates g-normal coordinates. Under these normal coordi-

nates,
xé
dx q,E ( u'e;) =l DAl 6, (3.1)
i=1

where dx is the Riemannian metric of X.

In addition, the Riemannian structure g of the isometrically embedded manifold X under

the g-normal coordinate (U, ¢ ) can be expressed as

0 0

gij(ul, s ud) = [

Here 2(q) j:l is a basis of T' (X)) [7, 25] and d® is a map from T (X) to Tp( (R")

induced by the inclusion map .

For each q LW, and u [0, g;; is well defined and is C' as a function on Wy, x U. It

satisfies g,;(0) = d;; and furthermore, we have the following proposition.

Proposition 2. For p X, choose W, and 6, as in Proposition 1. For each q [},
choose the q-normal coordinate (U, ¢ ) and the corresponding local representation g;; of the
Riemannian structure as above. Then the following two bounds hold with a constant Cy
independent of q LI, :

q

det(g;;)(u*, - ut) —1 < Cp ] M= 6y, (3.3)
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dx(q,z) * = [@—21< C, dx(q,z) *  ECEI(By,(0)). (3.4)

This proposition is a slight variation of Proposition 2.2 in [14] and it is easy to give a

self-contained proof as in [25]. So we omit the proof here.

In this paper, we have assumed that X is a Riemannian submanifold of IR". For each pair
(x,y) of points on X, we have the distance dx(z,y) under the Riemannian metric and the
distance [zl y[1inder the Euclidean metric. The following lemma concerning a relationship

between these two metrics was proved in detail in [25].

Lemma 1. There exists a positive constant Co = 1 such that

dx(z,y) < Colzl—y [ [x]y AL (3.5)

This lemma will be used frequently in the following since in learning processes we do not
see the Riemannian metric dx. We can only use the Euclidean norm [-[_1But in analysis,

we can assume the existence of dyx and make good use of it.

3.2 An illustration of computing integrals on manifolds

In order to get some ideas of using g-normal coordinates system to compute some integrals

on the Riemannian manifold X, we prove the following lemma.

Lemma 2. For the Gaussian kernel K, defined by (1.6), we have
z
K,(q,)dV (y) < €xc? [gI[ A, o >0, (3.6)
X

where €x is a constant independent of o or q.
Proof. Let Wy, 0, and Cp as in Proposition 1 and Proposition 2. Denote Wr? = Wy n

Ep(Bs,/2(0)). Since X [Tl W) and X is compact, there exists a finite subset P of X
such that X CTIap W

Let § = minpyp min 3%,% > 0. Let the constant Cy as in (3.5). Let q [CA. Tt
P

v q
belongs to some WF? with p [CPl. Choose B\(7 ={zr X : dx(q,z) < Cyp 2d+ 60 log %}

Choose a constant 0 < 0g =<1 such that Cp 2d + 609 log o, <y,
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We first consider the case when 0 < o < 0p. Since E is a diffeFt;morphism on By« (0),
using the equality (3.1), we have B, [El(Bs(0)) and B, = {E ( _,u'e;) : u B},

where r

B, = u [OR?: [l 00\/2(1—+60 1og§ . (3.7)
For u = (u!,...,u%) CIA?, denote ¢ (u) = E (P ¢ ule;), then B, = ¢ (B,).
Using (3.1) and the inequality (3.4) in Proposition 2, we have
dx(a,¢ (u) = G- ¢ (u)BE= Wl [g-¢ (u)BEI< Cpdi(q, ¢ (u) = Cp [l

By the definition of § , dx(q,¢ (uv)) = [wl 4§ < min 3%,% . Hence,

Hmas @(u)—qﬁggm GOCA,. (3.9)
In addition, by the inequality (3.3) in Proposition 2,
% < det(g,)(ut 2, ) < g GOCA,. (3.9)
D%compose the domainZX into two parts Bo_zand X\B,. We have
. K,(q,y)dV (y) = L Ko(q,y)dV(y) + - Ko(q,y)dV(y) = Ji(q) + J2(q).

Using the local representation of the Riemannian volume measure under the g-normal coor-

dinates involving a measurable function h on B, :

z z q
hy)dViy) = h(@ (v))  det(g;)(u)du, (3.10)

B3 Bs

the first term Ji(q) is
Z
G- ()21 9

Ma)=  ep =22 det(g,)(w)du
B, o

By the inequalities (3.8) and (3.9), we have

Z g Z

du <
—— du <
402

[\CR GV
[\CR V]

exp — —— du.

<

o exp  —
Bs
Using the radial coordinates in IR?, for any univariate function ¢(r) : R+ B IR, we have the
following equality for the radial function v ( yD)]

Z 97/2 Z, -
Oy = s vl (3.11)

R
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R
where I' is the Gamma function given for a [{0, 00) by I'(ar) = 01 re e dr.

,’,2
Applying (3.11) to the function ¢ (r) = e 1%, we have Ji(q) < 3 - 24 Irigd.

js for th&- second term J>(q), we notice that for y Iji/\B(77 th(arestriction dx(q,y) =
Co 2d+ 60 log% together with (3.5) implies [ql—y[Z 2d+ 60 log % Thus

z
2d + 6)c?log *
B = exp —24EOTIRs )
ZXnB:;l 20
= o™3dV (y) < Vol(X)o?.
XnB3J

Combining the estimates for J1(q) and Jz(q), for 0 < o < gg, we have
Z

Ko (q9)dV(y) < 3-2¢ 72 4 Vol(X) o
X

For the case o0 = 0y, it is easy to see from e " < 1 for r = 0 that
z

Vol(X
Ko fat 5)dV (5) < Vol () = Y2 oo
X 90
. . . d 1.4 VOI(X)
This proves the desired result with the constant €x = 3-2¢ 72 4+ Vol(X) + — ]
0

Remark 1. In the proof of Lemma 2, we only need Wy instead of WF?. To be consistent with

later discussion, we use WF? here.

3.3 Some ideas for proving Theorem 2

R R 2
Since LIJ(f) = flxcm x x&P — kng?ék f(y)aV (y) — f(z) "dV (x) involves two lay-

ers of integrals, we need to decompose it twice to make the integral computable in local

coordinates.

Let VI[?/F?’ P and og be as in §3.2, W? know that X [LJp WF?. Thus LL)(f) — fLdx =
p2p Wy |1, (f)(z) = f(x)[PdV () P. Tt will be seen in the following Proposition 4 that
the operator I, : LP(X) B LP(X) is uniformly bounded (the bound is independent of
Furthermore, C* (X) is dense in HY(X). Thus the problem becomes to estimate

wy |I,(f)(z) = f(z)[PdV (x) for each p [Pl, o < 0g and f CCF (X).

R
Note that I,(f) in the expression ., |I,(f)(z) — f(z)[PdV () still contains an integral
P
over the whole manifold X. We need to decompose it further. Let q [IJ. Choose B, and
B, as in §3.2.
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Separating the domain X into two parts B, and X \ B, , we have

Z
L) = oy Kola V) + o Kol aV ()

The second term of the above equation can be easily bounded due to the fast decay of

K,(q,y). Using (3.10), the first term equals
z _ g
1 -0 W 6 w)) detlgy)(w)du. (312)

— ex
( 2mo)? B P 202

o

For approximation in C'(X), the quantity |f ¢ (u) | can be easily bounded by the uniform
norm Lflgdxm

For LP approximation, we need to tackle the following problem.

Question 1: How can one bound the expression (3.12) in terms of [fI g} xby treating
3 (
f(¢ (u)) properly?

In the further decompositions, the term f(¢ (u)) — f(q) naturally appears. Since f [
C! (X) [CHY(X), it reminds us of the Taylor expansion of f(¢ (u)) in its integral form.
We denote by D*h the kth derivative of a function h on the Euclidean space IRY. That
is, the components of D*h are given by (D*h);, ., = 0i, i,h, where (iy, - ,i5) CIR? and
i1+ -+ +13 = k. Then
Xd 24
(@ () = fla) = ), eu' (L=y)D*(f(¢ (yu)))(u, u)dy. (3.13)
i=1
Question 2: How can one bound (3.13) in terms of [fTz by by handling D?(f(¢ (yu)))
properly?

The above two problems will essentially be solved by the following Proposition 3. It gives
us bounds of wy |f ¢ (u) |PdV(q) and wy D?(f o ¢ )(u) "dV(q) in terms of Ul xm

P .
Proposition 3. Let p L X and ¢ (u) = E le u'e; foru = (ub,u?, - ut) CIRY and

q LY = Wy n Ep(Bs,/2(0)). Then there exists a constant &y satisfying 0 < 6y < %" such

that for all [ul < (53, we have
Z Z

o () PdVia) =Gy M@Pdvie)  CACINX) (3.14)
ZP
L D=0 V@) = QUG LAETY), (3.15)

where C’S and C’goare two constants independent of f or u.
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Proof. Let WR be as in Proposition 1. Let q = ¢P () W, and fi(z,u) = h(¢P(z),u) =
¢ (u). Write , f(¢ (u)) "dV(q) in the p-normal coordinate, we know that

V4 ’ Z q

/(¢ (w)PdV(q) = f(fi(z,w) " det g (x)da. (3.16)

f 22 IR%:¢P (x 2W,g

Wp

From the definition of g;(x), we know that | det gfj(x) > 0 for all [xI"& §,. On the other
hand, dx(p, f(z,u)) < dx(p, ¢° (v)) + dxfa, & (u < % 4 [l = §, for all (z,u) CH =
{(z,u)) : 9P (x) I:WF?, lul < 5"} Thus detg (gbp) Yo®(x,u) > 0 for all (z,u) [H.
Let g(z,u) = (¢P) * o B(z,u) and J(z,u) be the Jacobian of g(x,u) with respect to the
variable z, i.e.,

9g1(z,uld 9g1(zuld  Og1(z,ul]
dz! Oz Oxd
J(z,u) = : : . :
9g4(z,ul] O9g4(z,ull  Ogy(z,ul]
ozl Ox? Oxd

It is easy to see that g(z,0) = (¢P) ! B(z,0) = . Hence J(x,
continuous on the compact set By, there exists a constant 0 < 50 <

for all (z,u) [Bp := {(x,u) : ¢° (x) CIHY, [ul=k 63}

= 1. Since J(x,u) is

0) =
%" such that J(z,u) > 0

detgfj(mlzl
detg% (¢P E! h(z,uld(z,ul]
compact set B,. So the constant

is well defined and continuous on the

Therefore, the function M

det g (x)
Cp = max ¢
(z,ul2By det gz (pr) 1o (ZL’, u)J(x, U)

is positive and finite. It follows that (3.16) can be bounded as

Z
O w)lavia)
z q
= G f@(z,u) " det gl o (¢°) * o Bz, u)J (z, u)dx
Zf 22 R:¢P (2 [2W)g 7
= G W @i @)= If@Prd(a) (3.17)

by a change of variables x [@l (u). This proves the inequality (3.14).

As to the second inequality (3.15), denote f(u) := fo¢P (u) and g(q,u) := (¢P) 1o (u),
then
f(@ (u)=fedP () too (u) = Peogla,u).

15



Let y = g(q, u), by the chain rule,

Xd "
D(fed )(u) = 35:5)_89%(3, )

k=1

and

_ X PRy dgdaw) dula ) X 0F(w) Pola,w)
J Oykoyt ou’ ou’ oyt Ouious

k=1 k=1

D*(f°¢ )(u)

Since the function g(q,u) is C* on {(q,u) : ¢ CY, [ul & &,}, we have

Ogr(aq,u)  Oge(q,u)

Ch = sup : - : < oo,
2Wkuk 6,1 Kiliij d u’ ou?
82
Cy = sup M
2W7 kuk 8p,1 ki d du'du’
Hence ’ ’
X 92 fy) X 0f(y)

D?(f o o =C — 2 . 3.18
(et Y 1l<:e=1 dyroy* i 2k:1 oy* ( )

Applying the local representation of [f_dnd [Zflnder the p-normal coordinate, we know
that

2 xd
SR - e+ thgaw obw o DU g

Denote Cs := SUp 5w kuk sp1 kbm d Lt g(q,u) , we can bound (3.18) further as
xd xd
D*(fe¢ Y(u), <Cy ¢ (u) + (Co + d*C1Cs) 7 (u)

k=1 ke k=1 k

=)
This together with the elementary inequality ([, |a;|)? <mP? 2, |a;|” implies that
D*(fo¢ )(u)? <3°d""?(Cy+ Cy+ *C1Cs)”  Zf¢ (u) P+ OFH (u) ¥ . (3.19)

Integrating over WF? with respect to q and using the inequality (3.14), we get the desired
result. O

Proposition 3 yields the following lemma that will be frequently used in proving Theorem

16



Lemma 3. Let W) = W, n Ey By, 2(0) and B, be given by (3.7). Let 6] and Cy be
the constants in Proposition 3. Set § = minpop min{ég, 3«%} and oo (0, 1] satisfying

v__p
Co 2d+ 609 logo,' <& . Assume h is a measurable function on R* and f TIP(X) with
p=1. Then

z z ) Z

_ h()f(@ (w)de V(@) = (C)r Pladece Ih(wldu (3.20)

W) Bo -

3=

Proof. By the definition of B,, we know that for u [B,, wl & § < J3. Then the case

p = 1 follows from (3.14) and a change of order of integrals.

When p > 1, let ¢ = le and write |h(u)| = |h(u)|%+% Then using the Holder inequality
and (3.14), we have

Z Z » 1
_ hu) f(¢ (u))du dV(q)
W, B,
Z Z 2 Z 1
= _Nh@)ldu  R)[f (@ (w)[PdudV (q)
W, B Bo
Z e Z Z 1
= _h)ldu JR(u)] |f (@ (w)IPdV (g)du
B, Z Bo W,
= (CS)% LA L dox o 5 |h(u)|du.
This proves (3.20) in the case p > 1. ]

3.4 Uniform boundedness of linear operators

We give the uniform boundedness of the operator I, : LP(X) B LP(X) defined by (2.4). It

will be used not only for the proof of Theorem 2, but also for deriving Theorem 1.

Proposition 4. Let I, : L’(X) B LP(X) be defined by (2.4). Then

[(f) Gdxe= O A xo [al> 0, f CLP(X), (3.21)

where C% is a constant independent of o or f.

Proof. Let W2,69,8 and og be given in Lemma 3 and P be a finite subset of X such that
P

17



X E@Wg. For o = oy,

Z Z 1
1 [z1— ¢ [Z] p »
D(f) o = Ve exp == f(y)dV(y) V()
( 271’0‘)d X b'e 20
] Z Z P 1
< av av
< T ok x lf(WldV (y) dV(x)
(Vol(X))» Vol (X)
avy) = ~v—
C o) x |F()ldV (y) = C omon) L ox
For 0 < 0 < g9, we know from the inequality
x (z )2
L(f) Cedxs= 11 (f)(@)lPdV (q)
p2p Wi
that it is sufficient to prove for each p [P,
Z 1
1L (H@lPdV(a) =C%, Hhdxn [0k o < oo (3.22)
Wy

P
In fact we get (3.21) by setting C% = max Z\pf%, 02P Cp

Now we prove (3.22) for each p [Pl Let 0 < 0 < 0.

For any q I:IZ]’F?, choose B, , B, as in 83.2. Decompose the domain X into two parts B,
and X\B,. We have from (3.10)

z o q
W@ = e e S0 LB 6wy detlgy)
TEVER Ko(a,y).f(y)dV (y)

(" 270)0  xnps

= Ji(q) + J2(q).

For the first term J1(q), we see from (3.8) and (3.9) that
Z

3 [wI®]
Ji(q) = —~—— exp — u))| du. 3.23
() S g e = 1 () 3.29
By inequality (3.20) in Lemma 3 with h(u) = 2_(923772‘16}{1) — % , we have
Z

B =

z
L n@rdvia) = (G o hludu

P

o

18



By a change of variables # and the equation (3.11), we have
Z Z
3 wI?]
h(u)du < —(27) 2 exp ——— du=3-22 1
Eo‘ 2 RY 4

Theref
erefore, 7

AL

lh(Q)PdV(q) <3-2¢
Wy

(O g x 1 (3.24)

js for th& second term J>(q), we &otice that for y CN\B,, the restriction dx(q,y) =
Co 2d+ 60 log% yields [gl—y[= 2d + 60 log%. Thus
] Z
|2(q)] = AM—— Ko, y)f(y)dV (y)
( QWU)dZ XnBg
1 (2d + 6)o? log 2

exp — 57 |f()|dV (y)

( 2m0)? $npg
< (2m) Y% |f(y)dV(y).

X

Hence

z z z )

Ne(@)ldvia) = (2m) %07 F®)laV(y) dV(a)

W, W, X

(2m) “2Vol(X) T xa®
< (2n) Y*Vol(X) UTed(x (3.25)

3 =
S =

IA

Combining this with the inequality (3.24), we get the desired bound (3.22). O]

3.5 Proof of Theorem 2

Now we can prove Theorem 2.

Proof of Theorem 2: Let Wr?’ 58,(5 and oy be given in Lemma 3 anlg\l P be a finite

subset of X such that X [Lfzp W7. We have [I)(f) — fLidxc= 2P Wy |1, (f)(q) —
f(@)PdV (q) ». Note that C! (X) is dense in HY(X). Together with the ineqlbality (3.21) in
Proposition 4, the inequality (2.5) is verified with Cx = max (C% + 1)o, 2, o2p Cxp if
we can prove that for f [Ct (X) and p [P,

z

3=

» 1,(f)(z) = f(z)PdV (z) < Cxpflghxrg® [OK o < oo. (3.26)

P
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We prove (3.26) in three steps. Let 0 < o < 0.

SteR 1: Decomposition. Let q I:IZVS. Choose B,, B, as in 83.2. By the identity

kzlgkj }du =1, we can decompose f(q) as

1 _
C2mom R exp{

Z z
1 mEa 1 mEa
fq) C Ty 5,50 T 202 fla)du + CToy wans, P T 202 fla)du

Separate the integral on X for I,(f)(q) to two parts on B, and X\B,, we have

I;(f)(a) = f(a) = Ji(a) + J2(q) (3.27)
where
1 c @ (] 9
Ji(a) = m _eP T f(o (u)) det(g;;)(u)
e~ ) au
1 z 1 z [wIZ]
S(q) = (A/m XBqKa(q,y)f(y)dV(y)—m I e f(a)du.

R 1
Step 2: Estimation of |, |J1(q)[’dV(q) *. We separate the error further as
P

ha) = N ep —E2WE B 0
( 2770') % 20 20
Z 4 q
ot e~ (o () et ) =1 o
ZU
Mo ew g (6 (W)= ) d

= Jj_]_((?l) -+ JlZ(CI) + J]_3((1)-

For Ji1(q), we use (3.4) and the elementary inequality |[e *—e °| < |a—b|max{e ¢, e *}
(valid for any a,b > 0) and find that

Z

1 — [z] [wIZ]
sl = o e e I T )

1 [q— ¢ (u)[Z] izl C

= oy MY TT 0P ThE g Wl
So by (3.8),
z 1 [wIZ] Cy, [wl™]
|11 ()] = . F/mexp T 12 pzTUt((b (u))]du.
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It follows from (3.20) in Lemma 3 with h(u) := ZpiT_ﬂeXp - 'j;k; C‘;':;k4 that
Z 1 Z
P 1
|[Jiu(@)PdV(q) = (C;?)” U h(u)du.
Wy, B,

By a change of variables * and the equation (3.11), we have

Z 7 ;
2530 (44
h(U)dU < ﬁ(2ﬂ') %0'2 exp — @i_—l mu _ 2 pd ( 2 ) 2
Bo 2 R 4 F(E)
Hence 7 1 ) 1
po 29730 (CO)p (44
n(@pPaviq < I g (328)

Wp

For Ji2(q), we use (3.3) and (3.8) and obtain
Z

e < Vo2 e — o (o ()l

Thus using (3.20) in Lemma 3 with h(u) = ZP%)TEGXI) - % [uIZ]we obtain

Z L . .
» 25720 (O0)p (42
|J2(Q)PdV(q) <= p ( r;) )
e I'(5)

L x g’ (3.29)

For the last term Ji3(q) of Ji(q), we apply the Taylor expansion (3.13) and get the

following further decomposition:

z d
1 [wIZ] X
Jis(q) = M—— _exp — (I 774), e, u; [
( 2mo)? B, 20 s
Z,
- _ 2
( 2mo)d B, exp 202 (L =y)D*(f(¢ (yu)))(u,uw)dydu
= Jis(q) + Ji5(q). (3.30)
Since . d
1 [uI2] X i
( %O’)d R4 eXp 9252 )7 1 € u [ = Oa
we have ~
0 1 121
Halal= exp = e | Tl 331

( %U)d IRINB, 20?
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Let ¢ = £ when p > 1 and denote h,(u) := —p%T_ﬂexp — kuk® T Then using the

p 1 ( 202
Holder inequality, we get
Z 1
|73 (a)IPdV (q)
Wy
Z Z pZ 1
< ho(u)du ho(u)| ) [PdudV (q)
W}, fdnéo RnB,
1 [wI2]
< Oz ——exp —
2(xd Rin ( 27ra)d p 902
2l dy r2
= [flg Orcdy exp — — ridr
2 (%l) r Copm\/logi 2
2l dg C2(2d +6)(logo 1) 2
= U4 exp — exp — — rr
) P s T 4 4
> Z
91 dm(x_gn%q} 1 r2 2F<ﬂ)
2 exp —— rildr< 2 m(xgz. (3.32)
F(g) 0 4 F(%l) ’

The proof for (3.32) in the case p = 1 follows directly from a change of order of integrals.

As for the term J9%(q), it is easy to see that

1 z (2] Z 1
/5@ < V—— exp ——— (1—y) D*(f > ¢ )(yu) wldydu.
( 2m0)? B, 209 o

For u [CB,, by (3.15) and the Holder inequality when p > 1, we get

Z Z, P
L (1—y) D*(f>¢ )yu) dy dV(q)
z" z, vZ,
= (1—y)dy (1—y) D*(f ¢ )(yu) "dydV(q)
W/ 0 0
Z 1 p COO
= o (1 - y)dy ng:fj_—?;%(xm: 2_;] III:P;JQ’(XD
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_ kuk?
202

Denote 8, (u) := ZP%TEeXp [wIZ] Then using the Holder inequality, we know that
Z
lJ5(@)PdV (q)
Wy
z" z »Z Z, ,
¢ )yu)ldy dudV(q)

S =

3=

IA
P
q
=
QU
c
D
q
£
—~
[a—
I
s
)
N
—

= —(C

< (C%»

This together with (3.3 ) yields
Z

3=

L(%)

()

lJs(@PdV(q) =< ((C3)r +2) b xa’.
Wi
Combining the estimates for J11(q), J12(q) and Ji3(q), we have
(z ) 1
[A(@PdV(a) < 257G (CR)F + (CRY +2
WI

P

)

N2/
()

I(

2T, (333)
R 1

Step 3: Estimation of |, |/2(q)|?dV (q) *. Denote the two terms in the expression

of J(q) as J3(q) and J{q). The first term J2(q) of J»(q) has been estimated in the proof

of Proposition 4 as (3.25). Hence
Z

hSA

N @rdvia) = @2m) Vol(X) el (3:34)

P

Now we bound the second term of J,(q). Using (3.11) again, we have

Z
1 [wI?]
JO = Jv% — d
|72%a)l o s, P T 202 fla)du
< Al oxp = T
( 2m0)¢ wuk o 2d+60(logo—1 072 202
21 % 2
= |/ (@)l exp —— rtar
r'(4) ) r Co” 2d+6(log o1 112 2
2! & C2(2d + 6)(log o * 2
= g lflal exp — 0(2d + 6)(log o ) exp — L i 1y
F(i) r Copm(logrlzw 4 4
ol § Z, d43. 02 r2 il . scs
s ——If(@) o2z %exp —— r? tdr=2z2|f(q)lo >
['(3) 0 4

23



But Co =1 and d = 1, so there holds

Z Y4

Rldvi@) =280t If(@FdV(e) =2

Vo

LS
=

[SIIoH

L x g

Combining this with (3.34), we get
V4

hSA

U R@ldV@) = 2m) SVel(X) + 28 D™

P

This together with (3.33) yields the desired estimate (3.26). O

4 Learning Rates

In this section, we derive learning rates for the multi-kernel classification algorithm (1.9) in
the manifold setting, especially for the case of SVM. This is done by balancing the sample
error and the regularization error [SZ2, WYZ, WZ].

We need the following result from [26] where we have changed some notation in order to

make it consistent with this paper.

The regularization error of the algorithm (1.9) is defined as

D(\) = min min  Ey(f) —E;(f7) + AL . A>0. (4.1)
Denote r
Cr=sup max{le® (O 120} = 2O (42)

A

Proposition 5. Let X be a subset of R" and ¢ be admissible with C\ < oo. Define f, \ by
(1.9). Then we have

r—

2 1/4
E Es(fon) —Es(f)) <Ca A0 log™m =7 QAL?% +D(N), (4.3)

A m

where C°is a constant independent of m or \.

For the SVM case, we have a simplified version of Proposition 5.
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Proposition 6. Let ¢(x) = (1 — z)+ = max{0,1 — z} and X LIR". Define f,\ by (1.9).
If0 < X\ < 1, then there exists a constant C° independent of m or X such that

1/4

2
EEs(fon) —Es(f) = & 5™ T p. (4.4)

A m

Thus if we can estimate the regularization error D(A) in the manifold setting, the excess
misclassification error can be easily derived using the comparison theorem between the excess

misclassification error and excess generalization error.

4.1 Learning rates for the multi-Gaussian SVM classifier

We begin with the special case of multi-Gaussian SVM classifier. Since f;f’ = f. and ¢(z) —
¢(y) < |xr — y| for the hinge loss, we can bound the regularization error D(\) as

D(\) < inf inf m—fch(xﬁAm@.

02(0,1 CF2H g,

Thus we only need to bound infgz01 cnfyon ., A= fe IEPIX (x T+ )\III?K:(II for the SVM

case.

We shall choose f = I,(f.) to bound D(\). So we need to estimate [Z)(f.) s .

Lemma 4. Let 1 <p < oo and f CIP(X). Then the function I,(f) is in Hg, (X) and

8
p—1 d -
D = | Cze®) 7 T v, fl=p=2
S ( L_(€x): (Vol(X))? » [T dxg 2, if p>2
! e i 1l _d
= m(@’){)l min{p,2} (VOZ(X))2 max{p,2} m(){g T (4.5>

where €x is the constant given by Lemma 2.

Proof. By the definition of I,(f) and the equation

mU('7y)7KU('7Z)@g :KU(ya Z)v (46>
we have Z Z
[ (f) G = ~—— Ko (y,2) f(y) [ (2)dV (y)dV (2).

( 2m0)2 x x
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When p =1, we get from Ka(yzz) ZS 1 that
1

NG S o WOV @IVE) = @o— 2412 41

X X
which proves (4.5) in this case.

When 1 <p=<2 weset q= p and apply the Holder inequality to the function
(Ko (y, )71 W1 - (Ko (y, )71 f(y )l 1|f(2)l. Then

Z Z 1
1 q
MNHE = =7 Ko (y, 2)If (W)PdV (y)dV (=)
( 2m0) x x
Kl It D@raveave) T @)
R
Lemma 2 tells us th%t X K, (y,2)dV(z) < €xo? for each y [ X. So
o K@@V ()dV () < Exo DT
On the other hand, for z [XI, we apply the Holder inequality and find
Z Z 12 2
Ky AP Dave) s 1rav) oy 2)F V()

R a R
But £ > 1 and Ko(y,zz) =1.So (K,(y,2)rdV(y) = , K;(y,2)dV(y) < Exo®. Hence
Koly )P Dav(y) = Ol @xo”)?.

e
It follows that
1 d %n +p(l 2 EO%
()G = W Exo Efj@(xm (X0 ?@XU ‘
@ ’
'—_.ﬂ:ng(Xﬂ B
That is,
€)' d
I(f) L] = %"%M(xﬂ P
When p > 2, each function in LP(X) lies in L?(X):
Z 1
L dxo = N |f(m)|2dV(x)
( Z % Z 1 %) %
< |f(@)[PdV () dV(z)
X X

= (Vol(X))? 7 Fledexes
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So the desired bound follows from the case p = 2:

3 . (Ex)F (Yol(X))? » .
D = 2L g § < GLQASS P gt
( 2m)? ( 2m)?
This proves the desired inequality (4.5). O]

Proposition 7. Let X be a connected compact C*  submanifold of IR™ without boundary
which is isometrically embedded and of dimension d. If f. TLYX), HX(X))g for some

0<0<1, then
(

)
2
D(\) < (C§+1+Cx)m@w ATt

(2m)4

Proof. Let o [{0,00). For any g CH2(X), we get from Theorem 2 that

[T (g) — gl o= Cx Lol (g

By Proposition 4, we also have

(f.) — I (9) Cix= L(fe — 9) L= O gt f.Ddxm
Since f. CTLY(X), H3(X))y, we know that

LA(f.) — feldxm = L(fe) — Io(9) Cdx oo L (g) — 9Cdix oot Lo fe Ldix oo
< (C% +1)Igr f.Cdix ot Ox gl (g

Taking infimum over ¢ CH2(X), we get
n (0]

(f.) = f.Cdxo = (CY +1+Cx) inf @_fclzll(XD'l_o_z@%(le

g2 HY(X O

= (C% +1+Cx)K(f.,0%) < (C% + 1+ Cx) A2,

Since f. is the Bayes rule, |f.(z)| =1 for all # [XI. Thus AL x = P Vol(X) and the

regularization error can be bounded as

D) < jnf ; D(f.) = f- e AI(f) B

< ; 0 20
= UZI(I&flEI (Cx + 1+ Cx) ALY + X 2n)

(
= (C%+1+Cx)ALH

. @XVOI(X) d)

g

@XVOI(X) /\%
(2m) ’

1
where we have chosen o = \20+d. O
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Proof of Theorem 1: An important relation between the excess misclassification error
and the excess generalization error for the hinge loss asserts that [27] for any measurable
function f: X B IR,

R sgn(f) —R(fe) =Es(f) —Es(fo). (4.8)

This together with Proposition 6 and Proposition 7 yields the desired results. OJ

4.2 Learning rates for general loss functions

We need the following relationship between E,(f) — E4( f/‘f) and [f1— ff Cedx cwhich can be
derived as Theorem 17 in [21].

Proposition 8. Let X be a subset of R" and ¢ be admissible.

(a)If ¢ is a Lipschitz s classification loss function on IR with Lipschitz constant C, then for
any measurable function f : XZEL R,

Eo(f) —Es(fp) =C le—f,?lsdpxSCDﬂ—fﬁ’EﬂpX < CLf- fy

PX '
(b) If ¢ is C* and its derivative is Lipschitz s on IR with Lipschitz constant C, then
1+s
£, (/) — o)) < O B, < O £

Motivated by this result, in the following, we assume that for any measurable function

f X B IR, the excess generalization error satisfies

E¢<f) - E¢>(f§$) =CLAa- f,g) Ig(x (4-9>

where C,p =1 and o [IH+ are constants independent of f.

Recall C) defined by (4.2). As in [24], we assume that
C\ < Co\ P, for some 3 [CIH4, (4.10)
where (Cj is a constant.

Theorem 3. Let ¢ be an admissible loss function with ¢°%0) > 0 satisfying (4.9) and (4.10).
Define f,x by (1.9) and fg’ by (1.5). Assume fg’ CP(X), HY(X))g for some 0 < 0 <1

6a min{p,2}+d
) 1002 m 2(3+28)0a min{p,2}+2(28+1)d
and p=1. Then by taking A = gT , we have

2 6o min{p,2} .
10g m,  4B+28)6amin{p,2}+4(26+1)d

Ezo zm R(Sgn(fz,/\) - R(fc) =0

- (4.11)
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Proof. As in the proof of Proposition 7, we have

D;l(ff) - fflﬂ(xzﬁ {C% +1+ Cx}UifIIn‘ze,

It follows from inequalities (4.9) and (4.5) that
D(\) = azi(%fl O Cﬂg(f/?) - f;b@(xzﬁ‘ Ml;l(fﬁ)ﬁ%
~n

< inf  C{C% + 1+ Cx} O + - €%g mntnm

02(0,1 OJ

(0]

min{p,2}

where @0 = o @(@X) mm{P 2} (Vol(X)) maX{p 27 Ilj)l?l;(XEl Taking ¢ = \200min{p.2}724  we
have

o 0 af min{p,2}
D\ = O{CX + 14+ Cx}* Y GGH 6% Aeomntr2ria, (4.12)
Since ¢ is an admissible loss function with ¢°0) > 0, it is shown in [8] that there exists a

constant Cy depending only on ¢ such that for any measurable function f: X B IR.

q
R(sgn(f) = R(f) <cp Es(f) —Es(f)). (4.13)

Then the stated error bound follows from Proposition 5 and (4.10). This proves Theorem
3. O

Now we apply Theorem 3 to g-norm hinge loss ¢(z) = (1 — x)% with ¢ > 1.

Corollary 1. Let ¢(x) = (1 — x)% with ¢ > 1. Define f;x by (1.9) and f? by (1.5).
Suppose that there exists a positive constant C, such that dpx < C,dV. Assume f;f’ 1

q20+d
2(24q)q20+42qd

(LY9(X),H}(X))g for some 0 < 0 < 1. If 1 < q <2, then by taking A = log” m :

we have 0 P 1
[
log® m 1ra)a05agd
Ezozn R(sgn(fn) —R(f) =0@ 22 A (4.14)
20+d
~ log2m CrOiF2ad
If ¢ > 2, then by taking A = gT , we have
l()gz m m
Eyozm R(sgn(fzn) —R(fe) =0 (4.15)

m

29



Proof. For ¢(x) = (1—x)% (¢ > 1), we have the following estimate for the excess generaliza-

tion error by Theorem 25 in [8].

(

e
Es(f) —Eo(f)) < oA

, ifl1<g=<2,
X

q24 1m—fglgx(24 14 m—ffﬂgi), if g > 2.

Together with the assumption that dpx < C,dV, for the case 1 < ¢ < 2, we can get the

desired results by using Theorem 3 with a = ¢ and 3 = qu. As to the case ¢ > 2, choose
a=1and g = %. This is the end of the proof. O]
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